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Preface 

In the time since the 1986 edition of this book, the world of compiler design 
has changed significantly. Programming languages have evolved to present new 
compilation problems. Computer architectures offer a variety of resources of 
which the compiler designer must take advantage. Perhaps most interestingly, 
the venerable technology of code optimization has found use outside compilers. 
It is now used in tools tha t find bugs in software, and most importantly, find 
security holes in existing code. And much of the "front-end" technology — 
grammars, regular expressions, parsers, and syntax-directed translators — are 
still in wide use. 

Thus, our philosophy from previous versions of the book has not changed. 
We recognize tha t few readers will build, or even maintain, a compiler for a 
major programming language. Yet the models, theory, and algorithms associ
ated with a compiler can be applied to a wide range of problems in software 
design and software development. We therefore emphasize problems tha t are 
most commonly encountered in designing a language processor, regardless of 
the source language or target machine. 

Use of the Book 

It takes at least two quarters or even two semesters to cover all or most of the 
material in this book. It is common to cover the first half in an undergraduate 
course and the second half of the book — stressing code optimization — in 
a second course at the graduate or mezzanine level. Here is an outline of the 
chapters: 

Chapter 1 contains motivational material and also presents some background 
issues in computer architecture and programming-language principles. 

Chapter 2 develops a miniature compiler and introduces many of the impor
tant concepts, which are then developed in later chapters. The compiler itself 
appears in the appendix. 

Chapter 3 covers lexical analysis, regular expressions, finite-state machines, and 
scanner-generator tools. This material is fundamental to text-processing of all 
sorts. 

v 
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Chapter 4 covers the major parsing methods, top-down (recursive-descent, LL) 
and bot tom-up (LR and its variants). 

Chapter 5 introduces the principal ideas in syntax-directed definitions and 
syntax-directed translations. 

Chapter 6 takes the theory of Chapter 5 and shows how to use it to generate 
intermediate code for a typical programming language. 

Chapter 7 covers run-time environments, especially management of the run-time 
stack and garbage collection. 

Chapter 8 is on object-code generation. It covers construction of basic blocks, 
generation of code from expressions and basic blocks, and register-allocation 
techniques. 

Chapter 9 introduces the technology of code optimization, including flow graphs, 
data-flow frameworks, and iterative algorithms for solving these frameworks. 

Chapter 10 covers instruction-level optimization. The emphasis is on the ex
traction of parallelism from small sequences of instructions and scheduling them 
on single processors tha t can do more than one thing at once. 

Chapter 11 talks about larger-scale parallelism detection and exploitation. Here, 
the emphasis is on numeric codes that have many tight loops tha t range over 
multidimensional arrays. 

Chapter 12 is on interprocedural analysis. It covers pointer analysis, aliasing, 
and data-flow analysis tha t takes into account the sequence of procedure calls 
tha t reach a given point in the code. 

Courses from material in this book have been taught at Columbia, Harvard, 
and Stanford. At Columbia, a senior/first-year graduate course on program
ming languages and translators has been regularly offered using material from 
the first eight chapters. A highlight of this course is a semester-long project 
in which students work in small teams to create and implement a little lan
guage of their own design. The student-created languages have covered diverse 
application domains including quantum computation, music synthesis, com
puter graphics, gaming, matr ix operations and many other areas. Students use 
compiler-component generators such as ANTLR, Lex, and Yacc and the syntax-
directed translation techniques discussed in chapters two and five to build their 
compilers. A follow-on graduate course has focused on material in Chapters 9 
through 12, emphasizing code generation and optimization for contemporary 
machines including network processors and multiprocessor architectures. 

At Stanford, a one-quarter introductory course covers roughly the mate
rial in Chapters 1 through 8, although there is an introduction to global code 
optimization from Chapter 9. The second compiler course covers Chapters 9 
through 12, plus the more advanced material on garbage collection from Chap
ter 7. Students use a locally developed, Java-based system called Joeq for 
implementing data-flow analysis algorithms. 
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Prerequisites 
The reader should possess some "computer-science sophistication," including 

at least a second course on programming, and courses in da ta structures and 

discrete mathematics. Knowledge of several different programming languages 

is useful. 

Exercises 

The book contains extensive exercises, with some for almost every section. We 
indicate harder exercises or par ts of exercises with an exclamation point. The 
hardest exercises have a double exclamation point. 

Gradiance On-Line Homeworks 

A feature of the new edition is tha t there is an accompanying set of on-line 
homeworks using a technology developed by Gradiance Corp. Instructors may 
assign these homeworks to their class, or students not enrolled in a class may 
enroll in an "omnibus class" tha t allows them to do the homeworks as a tutorial 
(without an instructor-created class). Gradiance questions look like ordinary 
questions, but your solutions are sampled. If you make an incorrect choice you 
are given specific advice or feedback to help you correct your solution. If your 
instructor permits, you are allowed to t ry again, until you get a perfect score. 

A subscription to the Gradiance service is offered with all new copies of this 
text sold in North America. For more information, visit the Addison-Wesley 
web site www.aw.com/gradiance or send email to computing@aw.com. 

Support on the World Wide Web 

The book's home page is 

dragonbook.Stanford.edu 

Here, you will find errata as we learn of them, and backup materials. We hope 
to make available the notes for each offering of compiler-related courses as we 
teach them, including homeworks, solutions, and exams. We also plan to post 
descriptions of important compilers written by their implementers. 
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Chapter 1 

Introduction 

Programming languages are notations for describing computations to people 
and to machines. The world as we know it depends on programming languages, 
because all the software running on all the computers was written in some 
programming language. But, before a program can be run, it first must be 
translated into a form in which it can be executed by a computer. 

The software systems tha t do this translation are called compilers. 

This book is about how to design and implement compilers. We shall dis
cover tha t a few basic ideas can be used to construct translators for a wide 
variety of languages and machines. Besides compilers, the principles and tech
niques for compiler design are applicable to so many other domains tha t they 
are likely to be reused many times in the career of a computer scientist. The 
study of compiler writing touches upon programming languages, machine ar
chitecture, language theory, algorithms, and software engineering. 

In this preliminary chapter, we introduce the different forms of language 
translators, give a high level overview of the structure of a typical compiler, 
and discuss the trends in programming languages and machine architecture 
tha t are shaping compilers. We include some observations on the relationship 
between compiler design and computer-science theory and an outline of the 
applications of compiler technology tha t go beyond compilation. We end with 
a brief outline of key programming-language concepts tha t will be needed for 
our study of compilers. 

1.1 Language Processors 

Simply stated, a compiler is a program that can read a program in one lan
guage — the source language — and translate it into an equivalent program in 
another language — the target language; see Fig. 1.1. An important role of the 
compiler is to report any errors in the source program tha t it detects during 
the translation process. 

1 
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source program 

Compiler 

target program 

Figure 1.1: A compiler 

If the target program is an executable machine-language program, it can 
then be called by the user to process inputs and produce outputs; see Fig. 1.2. 

input Target Program output 

Figure 1.2: Running the target program 

An interpreter is another common kind of language processor. Instead of 
producing a target program as a translation, an interpreter appears to directly 
execute the operations specified in the source program on inputs supplied by 
the user, as shown in Fig. 1.3. 

source program 

input 
Interpreter output 

Figure 1.3: An interpreter 

The machine-language target program produced by a compiler is usually 
much faster than an interpreter at mapping inputs to outputs . An interpreter, 
however, can usually give bet ter error diagnostics than a compiler, because it 
executes the source program statement by statement. 

E x a m p l e 1 . 1 : Java language processors combine compilation and interpreta
tion, as shown in Fig. 1.4. A Java source program may first be compiled into 
an intermediate form called bytecodes. The bytecodes are then interpreted by a 
virtual machine. A benefit of this arrangement is tha t bytecodes compiled on 
one machine can be interpreted on another machine, perhaps across a network. 

In order to achieve faster processing of inputs to outputs , some Java compil
ers, called just-in-time compilers, translate the bytecodes into machine language 
immediately before they run the intermediate program to process the input. • 
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source program 

Translator 

intermediate program —»H Virtual 
Machine output 

input —*A 

Figure 1.4: A hybrid compiler 

In addition to a compiler, several other programs may be required to create 
an executable target program, as shown in Fig. 1.5. A source program may be 
divided into modules stored in separate files. The task of collecting the source 
program is sometimes entrusted to a separate program, called a preprocessor. 
The preprocessor may also expand shorthands, called macros, into source lan
guage statements. 

The modified source program is then fed to a compiler. The compiler may 
produce an assembly-language program as its output , because assembly lan
guage is easier to produce as output and is easier to debug. The assembly 
language is then processed by a program called an assembler tha t produces 
relocatable machine code as its output . 

Large programs are often compiled in pieces, so the relocatable machine 
code may have to be linked together with other relocatable object files and 
library files into the code tha t actually runs on the machine. The linker resolves 
external memory addresses, where the code in one file may refer to a location 
in another file. The loader then puts together all of the executable object files 
into memory for execution. 

1.1.1 Exercises for Section 1.1 

Exerc i se 1 . 1 . 1 : What is the difference between a compiler and an interpreter? 

Exerc i se 1 . 1 . 2 : Wha t are the advantages of (a) a compiler over an interpreter 
(b) an interpreter over a compiler? 

Exerc i se 1.1.3 : What advantages are there to a language-processing system in 
which the compiler produces assembly language rather than machine language? 

Exerc i se 1 .1 .4 : A compiler tha t translates a high-level language into another 
high-level language is called a source-to-source t ranslator. Wha t advantages are 
there to using C as a target language for a compiler? 

Exerc i se 1 .1 .5: Describe some of the tasks tha t an assembler needs to per
form. 
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source program 

L_ 
Preprocessor 

modified source program 

Compiler 

target assembly program 

L _ 
Assembler 

relocatable machine code 

i 

Linker/Loader 
library files 
relocatable object files 

T 
target machine code 

Figure 1.5: A language-processing system 

1.2 The Structure of a Compiler 

Up to this point we have treated a compiler as a single box tha t maps a source 
program into a semantically equivalent target program. If we open up this box 
a little, we see tha t there are two parts to this mapping: analysis and synthesis. 

The analysis part breaks up the source program into constituent pieces and 
imposes a grammatical structure on them. It then uses this structure to cre
ate an intermediate representation of the source program. If the analysis par t 
detects tha t the source program is either syntactically ill formed or semanti
cally unsound, then it must provide informative messages, so the user can take 
corrective action. The analysis par t also collects information about the source 
program and stores it in a da ta structure called a symbol table, which is passed 
along with the intermediate representation to the synthesis par t . 

The synthesis par t constructs the desired target program from the interme
diate representation and the information in the symbol table. The analysis par t 
is often called the front end of the compiler; the synthesis par t is the back end. 

If we examine the compilation process in more detail, we see tha t it operates 
as a sequence of phases, each of which transforms one representation of the 
source program to another. A typical decomposition of a compiler into phases 
is shown in Fig. 1.6. In practice, several phases may be grouped together, 
and the intermediate representations between the grouped phases need not be 
constructed explicitly. The symbol table, which stores information about the 
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Symbol Table 

character stream 

i 
Lexical Analyzer 

token stream 

Syntax Analyzer 

syntax tree 

Semantic Analyzer 

syntax tree 

Intermediate Code Generator 

intermediate representation 

i 
Machine-Independent 

Code Optimizer 

intermediate representation 

i 
Code Generator 

target-machine code 

i 
Machine-Dependent 

Code Optimizer 

target-machine code 

Figure 1.6: Phases of a compiler 

entire source program, is used by all phases of the compiler. 
Some compilers have a machine-independent optimization phase between 

the front end and the back end. The purpose of this optimization phase is to 
perform transformations on the intermediate representation, so tha t the back 
end can produce a bet ter target program than it would have otherwise pro
duced from an unoptimized intermediate representation. Since optimization is 
optional, one or the other of the two optimization phases shown in Fig. 1.6 may 
be missing. 

1.2.1 Lexical Analysis 

The first phase of a compiler is called lexical analysis or scanning. The lex
ical analyzer reads the stream of characters making up the source program 
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and groups the characters into meaningful sequences called lexemes. For each 
lexeme, the lexical analyzer produces as output a token of the form 

(token-name, attribute-value) 

tha t it passes on to the subsequent phase, syntax analysis. In the token, the 
first component token-name is an abstract symbol tha t is used during syntax 
analysis, and the second component attribute-value points to an entry in the 
symbol table for this token. Information from the symbol-table entry Is needed 
for semantic analysis and code generation. 

For example, suppose a source program contains the assignment statement 

p o s i t i o n = i n i t i a l + r a t e * 60 (1.1) 

The characters in this assignment could be grouped into the following lexemes 
and mapped into the following tokens passed on to the syntax analyzer: 

1. p o s i t i o n is a lexeme tha t would be mapped into a token (id, 1), where id 
is an abstract symbol standing for identifier and 1 points to the symbol-
table entry for p o s i t i o n . The symbol-table entry for an identifier holds 
information about the identifier, such as its name and type. 

2. The assignment symbol = is a lexeme tha t is mapped into the token (= ) . 
Since this token needs no attribute-value, we have omitted the second 
component. We could have used any abstract symbol such as a s s ign for 
the token-name, but for notational convenience we have chosen to use the 
lexeme itself as the name of the abstract symbol. 

3. i n i t i a l is a lexeme tha t is mapped into the token (id, 2), where 2 points 
to the symbol-table entry for i n i t i a l . 

4. + is a lexeme tha t is mapped into the token (+ ) . 

5. r a t e is a lexeme tha t is mapped into the token (id, 3), where 3 points to 

the symbol-table entry for r a t e . 

6. * is a lexeme tha t is mapped into the token (*). 

7. 60 is a lexeme that is mapped into the token (60). 1 

Blanks separating the lexemes would be discarded by the lexical analyzer. 

Figure 1.7 shows the representation of the assignment statement (1.1) after 

lexical analysis as the sequence of tokens 

( i d , l ) <=) (id, 2) (+) (id, 3) (*) (60) (1.2) 

In this representation, the token names =, +, and * are abstract symbols for 
the assignment, addition, and multiplication operators, respectively. 

1 Technically speaking, for the lexeme 60 we should make up a token like (number, 4) , 
where 4 points to the symbol table for the internal representation of integer 60 but we shall 
defer the discussion of tokens for numbers until Chapter 2. Chapter 3 discusses techniques 
for building lexical analyzers. 
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position 

initial 

rate 

S Y M B O L T A B L E 

position = initial + rate * 60 

i 
Lexical Analyzer 

(id,l> {=) <id,2> <+) <id,3> (.> (60) 

* 
Syntax Analyzer 

<id,l) + 
(id,2)-

(id,3) 60 

Semantic Analyzer 

(id,l) 
(id, 2) 

(id, 3} inttofloat 
I 

60 

Intermediate Code Generator 

tl = inttofloat(60) 

t2 = id3 * tl 

t3 = id2 + t2 

idl = t3 

i 
Code Optimizer 

tl = id3 * 60.0 

idl = id2 + tl 

i 
Code Generator 

LDF R2, id3 

MULF R2, R2, #60.0 

LDF Rl, id2 

ADDF Rl, Rl, R2 

STF idl, Rl 

Figure 1.7: Translation of an assignment statement 
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1.2.2 Syntax Analysis 

The second phase of the compiler is syntax analysis or parsing. The parser uses 
the first components of the tokens produced by the lexical analyzer to create 
a tree-like intermediate representation tha t depicts the grammatical s tructure 
of the token stream. A typical representation is a syntax tree in which each 
interior node represents an operation and the children of the node represent the 
arguments of the operation. A syntax tree for the token stream (1.2) is shown 
as the output of the syntactic analyzer in Fig. 1.7. 

This tree shows the order in which the operations in the assignment 

p o s i t i o n = i n i t i a l + r a t e * 60 

are to be performed. The tree has an interior node labeled * with (id, 3) as 
its left child and the integer 60 as its right child. The node (id, 3) represents 
the identifier r a t e . The node labeled * makes it explicit tha t we must first 
multiply the value of r a t e by 60. The node labeled + indicates tha t we must 
add the result of this multiplication to the value of i n i t i a l . The root of the 
tree, labeled =, indicates tha t we must store the result of this addition into the 
location for the identifier p o s i t i o n . This ordering of operations is consistent 
with the usual conventions of arithmetic which tell us tha t multiplication has 
higher precedence than addition, and hence tha t the multiplication is to be 
performed before the addition. 

The subsequent phases of the compiler use the grammatical structure to help 
analyze the source program and generate the target program. In Chapter 4 
we shall use context-free grammars to specify the grammatical structure of 
programming languages and discuss algorithms for constructing efficient syntax 
analyzers automatically from certain classes of grammars. In Chapters 2 and 5 
we shall see tha t syntax-directed definitions can help specify the translation of 
programming language constructs. 

1.2.3 Semantic Analysis 

The semantic analyzer uses the syntax tree and the information in the symbol 
table to check the source program for semantic consistency with the language 
definition. It also gathers type information and saves it in either the syntax tree 
or the symbol table, for subsequent use during intermediate-code generation. 

An important par t of semantic analysis is type checking, where the compiler 
checks tha t each operator has matching operands. For example, many program
ming language definitions require an array index to be an integer; the compiler 
must report an error if a floating-point number is used to index an array. 

The language specification may permit some type conversions called coer
cions. For example, a binary arithmetic operator may be applied to either a 
pair of integers or to a pair of floating-point numbers. If the operator is applied 
to a floating-point number and an integer, the compiler may convert or coerce 
the integer into a floating-point number. 
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Such a coercion appears in Fig. 1.7. Suppose tha t p o s i t i o n , i n i t i a l , and 
r a t e have been declared to be floating-point numbers, and tha t the lexeme 60 
by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7 
discovers tha t the operator * is applied to a floating-point number r a t e and 
an integer 60. In this case, the integer may be converted into a floating-point 
number. In Fig. 1.7, notice tha t the output of the semantic analyzer has an 
extra node for the operator inttofloat , which explicitly converts its integer 
argument into a floating-point number. Type checking and semantic analysis 
are discussed in Chapter 6. 

1.2.4 Intermediate Code Generation 

In the process of translating a source program into target code, a compiler may 
construct one or more intermediate representations, which can have a variety 
of forms. Syntax trees are a form of intermediate representation; they are 
commonly used during syntax and semantic analysis. 

After syntax and semantic analysis of the source program, many compil
ers generate an explicit low-level or machine-like intermediate representation, 
which we can think of as a program for an abstract machine. This intermedi
ate representation should have two important properties: it should be easy to 
produce and it should be easy to translate into the target machine. 

In Chapter 6, we consider an intermediate form called three-address code, 
which consists of a sequence of assembly-like instructions with three operands 
per instruction. Each operand can act like a register. The output of the inter
mediate code generator in Fig. 1.7 consists of the three-address code sequence 

There are several points worth noting about three-address instructions. 
First, each three-address assignment instruction has at most one operator on the 
right side. Thus, these instructions fix the order in which operations are to be 
done; the multiplication precedes the addition in the source program (1.1). Sec
ond, the compiler must generate a temporary name to hold the value computed 
by a three-address instruction. Third, some "three-address instructions" like 
the first and last in the sequence (1.3), above, have fewer than three operands. 

In Chapter 6, we cover the principal intermediate representations used in 
compilers. Chapters 5 introduces techniques for syntax-directed translation 
tha t are applied in Chapter 6 to type checking and intermediate-code generation 
for typical programming language constructs such as expressions, flow-of-control 
constructs, and procedure calls. 

t l •• 
t 2 •• 
ts •• 
i d l 

i n t t o f l o a t ( 6 0 ) 
i d 3 * t l 
i d 2 + t 2 

t 3 

(1.3) 
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1.2.5 Code Optimization 

The machine-independent code-optimization phase a t tempts to improve the 
intermediate code so tha t better target code will result. Usually bet ter means 
faster, but other objectives may be desired, such as shorter code, or target code 
tha t consumes less power. For example, a straightforward algorithm generates 
the intermediate code (1.3), using an instruction for each operator in the tree 
representation t ha t comes from the semantic analyzer. 

A simple intermediate code generation algorithm followed by code optimiza
tion is a reasonable way to generate good target code. The optimizer can deduce 
tha t the conversion of 60 from integer to floating point can be done once and for 
all at compile time, so the inttofloat operation can be eliminated by replacing 
the integer 60 by the floating-point number 60.0. Moreover, t3 is used only 
once to t ransmit its value to i d l so the optimizer can transform (1.3) into the 
shorter sequence 

There is a great variation in the amount of code optimization different com
pilers perform. In those tha t do the most, the so-called "optimizing compilers," 
a significant amount of t ime is spent on this phase. There are simple opti
mizations tha t significantly improve the running time of the target program 
without slowing down compilation too much. The chapters from 8 on discuss 
machine-independent and machine-dependent optimizations in detail. 

1.2.6 Code Generation 

The code generator takes as input an intermediate representation of the source 
program and maps it into the target language. If the target language is machine 
code, registers Or memory locations are selected for each of the variables used by 
the program. Then, the intermediate instructions are translated into sequences 
of machine instructions tha t perform the same task. A crucial aspect of code 
generation is the judicious assignment of registers to hold variables. 

For example, using registers Rl and R2, the intermediate code in (1.4) might 
get translated into the machine code 

tl = id3 * 60.0 

idl = id2 + tl 
(1.4) 

LDF R2, id3 

MULF R2, R2, #60.0 

LDF Rl, id2 

ADDF Rl, Rl, R2 

STF idl, Rl 

(1.5) 

The first operand of each instruction specifies a destination. The F in each 
instruction tells us tha t it deals with floating-point numbers. The code in 
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(1.5) loads the contents of address i d 3 into register R2, then multiplies it with 
floating-point constant 60.0. The # signifies tha t 60.0 is to be treated as an 
immediate constant. The third instruction moves i d 2 into register Rl and the 
fourth adds to it the value previously computed in register R2. Finally, the value 
in register Rl is stored into the address of i d l , so the code correctly implements 
the assignment statement (1.1). Chapter 8 covers code generation. 

This discussion of code generation has ignored the important issue of stor
age allocation for the identifiers in the source program. As we shall see in 
Chapter 7, the organization of storage at run-time depends on the language be
ing compiled. Storage-allocation decisions are made either during intermediate 
code generation or during code generation. 

1.2.7 Symbol-Table Management 

An essential function of a compiler is to record the variable names used in the 
source program and collect information about various at tr ibutes of each name. 
These at tr ibutes may provide information about the storage allocated for a 
name, its type, its scope (where in the program its value may be used), and 
in the case of procedure names, such things as the number and types of its 
arguments, the method of passing each argument (for example, by value or by 
reference), and the type returned. 

The symbol table is a da ta structure containing a record for each variable 
name, with fields for the at tr ibutes of the name. The da ta structure should be 
designed to allow the compiler to find the record for each name quickly and to 
store or retrieve da ta from tha t record quickly. Symbol tables are discussed in 
Chapter 2. 

1.2.8 The Grouping of Phases into Passes 

The discussion of phases deals with the logical organization of a compiler. In 
an implementation, activities from several phases may be grouped together 
into a pass tha t reads an input file and writes an output file. For example, 
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and 
intermediate code generation might be grouped together into one pass. Code 
optimization might be an optional pass. Then there could be a back-end pass 
consisting of code generation for a particular target machine. 

Some compiler collections have been created around carefully designed in
termediate representations tha t allow the front end for a particular language to 
interface with the back end for a certain target machine. With these collections, 
we can produce compilers for different source languages for one target machine 
by combining different front ends with the back end for tha t target machine. 
Similarly, we can produce compilers for different target machines, by combining 
a front end with back ends for different target machines. 
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1.2.9 Compiler-Construction Tools 

The compiler writer, like any software developer, can profitably use modern 
software development environments containing tools such as language editors, 
debuggers, version managers, profilers, test harnesses, and so on. In addition 
to these general software-development tools, other more specialized tools have 
been created to help implement various phases of a compiler. 

These tools use specialized languages for specifying and implementing spe
cific components, and many use quite sophisticated algorithms. The most suc
cessful tools are those tha t hide the details of the generation algorithm and 
produce components tha t can be easily integrated into the remainder of the 
compiler. Some commonly used compiler-construction tools include 

1. Parser generators tha t automatically produce syntax analyzers from a 
grammatical description of a programming language. 

2. Scanner generators tha t produce lexical analyzers from a regular-expres
sion description of the tokens of a language. 

3. Syntax-directed translation engines tha t produce collections of routines 
for walking a parse tree and generating intermediate code. 

4. Code-generator generators tha t produce a code generator from a collection 
of rules for translating each operation of the intermediate language into 
the machine language for a target machine. 

5. Data-flow analysis engines tha t facilitate the gathering of information 
about how values are t ransmit ted from one par t of a program to each 
other par t . Data-flow analysis is a key part of code optimization. 

6. Compiler-construction toolkits tha t provide an integrated set of routines 
for constructing various phases of a compiler. 

We shall describe many of these tools throughout this book. 

1.3 The Evolution of Programming Languages 

The first electronic computers appeared in the 1940's and were programmed in 
machine language by sequences of O's and l ' s tha t explicitly told the computer 
what operations to execute and in what order. The operations themselves 
were very low level: move da ta from one location to another, add the contents 
of two registers, compare two values, and so on. Needless to say, this kind 
of programming was slow, tedious, and error prone. And once written, the 
programs were hard to understand and modify. 
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1.3.1 The Move to Higher-level Languages 

The first step towards more people-friendly programming languages was the 
development of mnemonic assembly languages in the early 1950's. Initially, 
the instructions in an assembly language were just mnemonic representations 
of machine instructions. Later, macro instructions were added to assembly 
languages so tha t a programmer could define parameterized shorthands for 
frequently used sequences of machine instructions. 

A major step towards higher-level languages was made in the latter half of 
the 1950's with the development of Fortran for scientific computation, Cobol 
for business da ta processing, and Lisp for symbolic computation. The philos
ophy behind these languages was to create higher-level notations with which 
programmers could more easily write numerical computations, business appli
cations, and symbolic programs. These languages were so successful t ha t they 
are still in use today. 

In the following decades, many more languages were created with innovative 
features to help make programming easier, more natural , and more robust. 
Later in this chapter, we shall discuss some key features tha t are common to 
many modern programming languages. 

Today, there are thousands of programming languages. They can be classi
fied in a variety of ways. One classification is by generation. First-generation 
languages are the machine languages, second-generation the assembly languages, 
and third-generation the higher-level languages like Fortran, Cobol, Lisp, C, 
C + + , C # , and Java. Fourth-generation languages are languages designed 
for specific applications like NOMAD for report generation, SQL for database 
queries, and Postscript for text formatting. The term fifth-generation language 
has been applied to logic- and constraint-based languages like Prolog and OPS5. 

Another classification of languages uses the term imperative for languages 
in which a program specifies how a computation is to be done and declarative 
for languages in which a program specifies what computation is to be done. 
Languages such as C, C + + , C # , and Java are imperative languages. In imper
ative languages there is a notion of program state and statements tha t change 
the state. Functional languages such as ML and Haskell and constraint logic 
languages such as Prolog are often considered to be declarative languages. 

The term von Neumann language is applied to programming languages 
whose computational model is based on the von Neumann computer archi
tecture. Many of today's languages, such as Fortran and C are von Neumann 
languages. 

An object-oriented language is one tha t supports object-oriented program
ming, a programming style in which a program consists of a collection of objects 
tha t interact with one another. Simula 67 and Smalltalk are the earliest major 
object-oriented languages. Languages such as C + + , C # , Java, and Ruby are 
more recent object-oriented languages. 

Scripting languages are interpreted languages with high-level operators de
signed for "gluing together" computations. These computations were originally 
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called "scripts." Awk, JavaScript, Perl, PHP, Python, Ruby, and Tel are pop
ular examples of scripting languages. Programs written in scripting languages 
are often much shorter than equivalent programs written in languages like C. 

1.3.2 Impacts on Compilers 

Since the design of programming languages and compilers are intimately related, 
the advances in programming languages placed new demands on compiler writ
ers. They had to devise algorithms and representations to translate and support 
the new language features. Since the 1940's, computer architecture has evolved 
as well. Not only did the compiler writers have to track new language fea
tures, they also had to devise translation algorithms tha t would take maximal 
advantage of the new hardware capabilities. 

Compilers can help promote the use of high-level languages by minimizing 
the execution overhead of the programs written in these languages. Compilers 
are also critical in making high-performance computer architectures effective 
on users' applications. In fact, the performance of a computer system is so 
dependent on compiler technology tha t compilers are used as a tool in evaluating 
architectural concepts before a computer is built. 

Compiler writing is challenging. A compiler by itself is a large program. 
Moreover, many modern language-processing systems handle several source lan
guages and target machines within the same framework; tha t is, they serve as 
collections of compilers, possibly consisting of millions of lines of code. Con
sequently, good software-engineering techniques are essential for creating and 
evolving modern language processors. 

A compiler must translate correctly the potentially infinite set of programs 
tha t could be written in the source language. The problem of generating the 
optimal target code from a source program is undecidable in general; thus, 
compiler writers must evaluate tradeoffs about what problems to tackle and 
what heuristics to use to approach the problem of generating efficient code. 

A study of compilers is also a study of how theory meets practice, as we 
shall see in Section 1.4. 

The purpose of this text is to teach the methodology and fundamental ideas 
used in compiler design. It is not the intention of this text to teach all the 
algorithms and techniques tha t could be used for building a state-of-the-art 
language-processing system. However, readers of this text will acquire the basic 
knowledge and understanding to learn how to build a compiler relatively easily. 

1.3.3 Exercises for Section 1.3 

Exerc i se 1 . 3 . 1 : Indicate which of the following terms: 

a) imperative b) declaratf 
d) object-oriented e) functiona 
g) fourth-generation h) scripting 

b) declarative c) von Neumann 
e) functional f) third-generation 
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apply to which of the following languages: 

1) C 2) C + + 3) Cobol 4) Fortran 
6) Lisp 7) ML 8) Perl 9) Python 

5) Java 
10) VB. 

1.4 The Science of Building a Compiler 
Compiler design is full of beautiful examples where complicated real-world prob
lems are solved by abstracting the essence of the problem mathematically. These 
serve as excellent illustrations of how abstractions can be used to solve prob
lems: take a problem, formulate a mathematical abstraction tha t captures the 
key characteristics, and solve it using mathematical techniques. The problem 
formulation must be grounded in a solid understanding of the characteristics of 
computer programs, and the solution must be validated and refined empirically. 

A compiler must accept all source programs tha t conform to the specification 
of the language; the set of source programs is infinite and any program can be 
very large, consisting of possibly millions of lines of code. Any transformation 
performed by the compiler while translating a source program must preserve the 
meaning of the program being compiled. Compiler writers thus have influence 
over not just the compilers they create, but all the programs tha t their com
pilers compile. This leverage makes writing compilers particularly rewarding; 
however, it also makes compiler development challenging. 

1.4.1 Modeling in Compiler Design and Implementation 

The study of compilers is mainly a study of how we design the right mathe
matical models and choose the right algorithms, while balancing the need for 
generality and power against simplicity and efficiency. 

Some of most fundamental models are finite-state machines and regular 
expressions, which we shall meet in Chapter 3. These models are useful for de
scribing the lexical units of programs (keywords, identifiers, and such) and for 
describing the algorithms used by the compiler to recognize those units. Also 
among the most fundamental models are context-free grammars, used to de
scribe the syntactic structure of programming languages such as the nesting of 
parentheses or control constructs. We shall study grammars in Chapter 4. Sim
ilarly, trees are an important model for representing the structure of programs 
and their translation into object code, as we shall see in Chapter 5. 

1.4.2 The Science of Code Optimization 

The term "optimization" in compiler design refers to the a t tempts tha t a com
piler makes to produce code tha t is more efficient than the obvious code. "Op
timization" is thus a misnomer, since there is no way tha t the code produced 
by a compiler can be guaranteed to be as fast or faster than any other code 
tha t performs the same task. 
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In modern times, the optimization of code tha t a compiler performs has 
become both more important and more complex. It is more complex because 
processor architectures have become more complex, yielding more opportunities 
to improve the way code executes. It is more important because massively par
allel computers require substantial optimization, or their performance suffers by 
orders of magnitude. With the likely prevalence of multicore machines (com
puters with chips tha t have large numbers of processors on them), all compilers 
will have to face the problem of taking advantage of multiprocessor machines. 

It is hard, if not impossible, to build a robust compiler out of "hacks." 
Thus, an extensive and useful theory has been built up around the problem of 
optimizing code. The use of a rigorous mathematical foundation allows us to 
show tha t an optimization is correct and tha t it produces the desirable effect 
for all possible inputs. We shall see, start ing in Chapter 9, how models such 
as graphs, matrices, and linear programs are necessary if the compiler is to 
produce well optimized code. 

On the other hand, pure theory alone is insufficient. Like many real-world 
problems, there are no perfect answers. In fact, most of the questions tha t 
we ask in compiler optimization are undecidable. One of the most important 
skills in compiler design is the ability to formulate the right problem to solve. 
We need a good understanding of the behavior of programs to start with and 
thorough experimentation and evaluation to validate our intuitions. 

Compiler optimizations must meet the following design objectives: 

• The optimization must be correct, tha t is, preserve the meaning of the 
compiled program, 

• The optimization must improve the performance of many programs, 

• The compilation time must be kept reasonable, and 

• The engineering effort required must be manageable. 

It is impossible to overemphasize the importance of correctness. It is trivial 
to write a compiler tha t generates fast code if the generated code need not 
be correct! Optimizing compilers are so difficult to get right tha t we dare say 
tha t no optimizing compiler is completely error-free! Thus, the most important 
objective in writing a compiler is tha t it is correct. 

The second goal is tha t the compiler must be effective in improving the per
formance of many input programs. Normally, performance means the speed of 
the program execution. Especially in embedded applications, we may also wish 
to minimize the size of the generated code. And in the case of mobile devices, 
it is also desirable tha t the code minimizes power consumption. Typically, the 
same optimizations that speed up execution time also conserve power. Besides 
performance, usability aspects such as error reporting and debugging are also 
important . 

Third, we need to keep the compilation time short to support a rapid devel
opment and debugging cycle. This requirement has become easier to meet as 
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machines get faster. Often, a program is first developed and debugged without 
program optimizations. Not only is the compilation time reduced, but more 
importantly, unoptimized programs are easier to debug, because the optimiza
tions introduced by a compiler often obscure the relationship between the source 
code and the object code. Turning on optimizations in the compiler sometimes 
exposes new problems in the source program; thus testing must again be per
formed on the optimized code. The need for additional testing sometimes deters 
the use of optimizations in applications, especially if their performance is not 
critical. 

Finally, a compiler is a complex system; we must keep the system sim
ple to assure tha t the engineering and maintenance costs of the compiler are 
manageable. There is an infinite number of program optimizations tha t we 
could implement, and it takes a nontrivial amount of effort to create a correct 
and effective optimization. We must prioritize the optimizations, implementing 
only those tha t lead to the greatest benefits on source programs encountered in 
practice. 

Thus, in studying compilers, we learn not only how to build a compiler, but 
also the general methodology of solving complex and open-ended problems. The 
approach used in compiler development involves both theory and experimenta
tion. We normally start by formulating the problem based on our intuitions on 
what the important issues are. 

1.5 Applications of Compiler Technology 

Compiler design is not only about compilers, and many people use the technol
ogy learned by studying compilers in school, yet have never, strictly speaking, 
written (even par t of) a compiler for a major programming language. Compiler 
technology has other important uses as well. Additionally, compiler design im
pacts several other areas of computer science. In this section, we review the 
most important interactions and applications of the technology. 

1.5.1 Implementation of High-Level Programming 
Languages 

A high-level programming language defines a programming abstraction: the 
programmer expresses an algorithm using the language, and the compiler must 
t ranslate tha t program to the target language. Generally, higher-level program
ming languages are easier to program in, but are less efficient, tha t is, the target 
programs run more slowly. Programmers using a low-level language have more 
control over a computation and can, in principle, produce more efficient code. 
Unfortunately, lower-level programs are harder to write and — worse still — 
less portable, more prone to errors, and harder to maintain. Optimizing com
pilers include techniques to improve the performance of generated code, thus 
offsetting the inefficiency introduced by high-level abstractions. 



18 CHAPTER 1. INTRODUCTION 

E x a m p l e 1 .2: The reg is ter keyword in the C programming language is an 
early example of the interaction between compiler technology and language evo
lution. When the C language was created in the mid 1970s, it was considered 
necessary to let a programmer control which program variables reside in regis
ters. This control became unnecessary as effective register-allocation techniques 
were developed, and most modern programs no longer use this language feature. 

In fact, programs tha t use the reg is ter keyword may lose efficiency, because 
programmers often are not the best judge of very low-level mat ters like register 
allocation. The optimal choice of register allocation depends greatly on the 
specifics of a machine architecture. Hardwiring low-level resource-management 
decisions like register allocation may in fact hurt performance, especially if the 
program is run on machines other than the one for which it was written. • 

The many shifts in the popular choice of programming languages have been 
in the direction of increased levels of abstraction. C was the predominant 
systems programming language of the 80's; many of the new projects started 
in the 90's chose C + + ; Java, introduced in 1995, gained popularity quickly 
in the late 90's. The new programming-language features introduced in each 
round spurred new research in compiler optimization. In the following, we give 
an overview on the main language features tha t have stimulated significant 
advances in compiler technology. 

Practically all common programming languages, including C, Fortran and 
Cobol, support user-defined aggregate da ta types, such as arrays and structures, 
and high-level control flow, such as loops and procedure invocations. If we just 
take each high-level construct or data-access operation and translate it directly 
to machine code, the result would be very inefficient. A body of compiler 
optimizations, known as data-flow optimizations, has been developed to analyze 
the flow of da ta through the program and removes redundancies across these 
constructs. They are effective in generating code tha t resembles code written 
by a skilled programmer at a lower level. 

Object orientation was first introduced in Simula in 1967, and has been 
incorporated in languages such as Smalltalk, C + + , C # , and Java. The key 
ideas behind object orientation are 

1. Da ta abstraction and 

2. Inheritance of properties, 

both of which have been found to make programs more modular and easier to 
maintain. Object-oriented programs are different from those writ ten in many 
other languages, in tha t they consist of many more, but smaller, procedures 
(called methods in object-oriented terms). Thus, compiler optimizations must 
be able to perform well across the procedural boundaries of the source program. 
Procedure inlining, which is the replacement of a procedure call by the body 
of the procedure, is particularly useful here. Optimizations to speed up virtual 
method dispatches have also been developed. 
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Java has many features tha t make programming easier, many of which have 
been introduced previously in other languages. The Java language is type-safe; 
tha t is, an object cannot be used as an object of an unrelated type. All array 
accesses are checked to ensure tha t they lie within the bounds of the array. 
Java has no pointers and does not allow pointer arithmetic. It has a built-in 
garbage-collection facility tha t automatically frees the memory of variables tha t 
are no longer in use. While all these features make programming easier, they 
incur a run-time overhead. Compiler optimizations have been developed to 
reduce the overhead, for example, by eliminating unnecessary range checks and 
by allocating objects tha t are not accessible beyond a procedure on the stack 
instead of the heap. Effective algorithms also have been developed to minimize 
the overhead of garbage collection. 

In addition, Java is designed to support portable and mobile code. Programs 
are distributed as Java bytecode, which must either be interpreted or compiled 
into native code dynamically, tha t is, at run time. Dynamic compilation has also 
been studied in other contexts, where information is extracted dynamically at 
run time and used to produce better-optimized code. In dynamic optimization, 
it is important to minimize the compilation time as it is par t of the execution 
overhead. A common technique used is to only compile and optimize those 
par ts of the program tha t will be frequently executed. 

1.5.2 Optimizations for Computer Architectures 

The rapid evolution of computer architectures has also led to an insatiable 
demand for new compiler technology. Almost all high-performance systems 
take advantage of the same two basic techniques: parallelism and memory hi
erarchies. Parallelism can be found at several levels: at the instruction level, 
where multiple operations are executed simultaneously and at the processor 
level, where different threads of the same application are run on different pro
cessors. Memory hierarchies are a response to the basic limitation tha t we can 
build very fast storage or very large storage, but not storage tha t is both fast 
and large. 

Para l l e l i sm 

All modern microprocessors exploit instruction-level parallelism. However, this 
parallelism can be hidden from the programmer. Programs are writ ten as if all 
instructions were executed in sequence; the hardware dynamically checks for 
dependencies in the sequential instruction stream and issues them in parallel 
when possible. In some cases, the machine includes a hardware scheduler tha t 
can change the instruction ordering to increase the parallelism in the program. 
Whether the hardware reorders the instructions or not, compilers can rearrange 
the instructions to make instruction-level parallelism more effective. 

Instruction-level parallelism can also appear explicitly in the instruction set. 
VLIW (Very Long Instruction Word) machines have instructions tha t can issue 
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multiple operations in parallel. The Intel IA64 is a well-known example of such 
an architecture. All high-performance, general-purpose microprocessors also 
include instructions tha t can operate on a vector of da ta at the same time. 
Compiler techniques have been developed to generate code automatically for 
such machines from sequential programs. 

Multiprocessors have also become prevalent; even personal computers of
ten have multiple processors. Programmers can write multi threaded code for 
multiprocessors, or parallel code can be automatically generated by a com
piler from conventional sequential programs. Such a compiler hides from the 
programmers the details of finding parallelism in a program, distributing the 
computation across the machine, and minimizing synchronization and com
munication among the processors. Many scientific-computing and engineering 
applications are computation-intensive and can benefit greatly from parallel 
processing. Parallelization techniques have been developed to t ranslate auto
matically sequential scientific programs into multiprocessor code. 

M e m o r y Hierarchies 

A memory hierarchy consists of several levels of storage with different speeds 
and sizes, with the level closest to the processor being the fastest but small
est. The average memory-access t ime of a program is reduced if most of its 
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and 
the existence of a memory hierarchy improve the potential performance of a 
machine, but they must be harnessed effectively by the compiler to deliver real 
performance on an application. 

Memory hierarchies are found in all machines. A processor usually has 
a small number of registers consisting of hundreds of bytes, several levels of 
caches containing kilobytes to megabytes, physical memory containing mega
bytes to gigabytes, and finally secondary storage tha t contains gigabytes and 
beyond. Correspondingly, the speed of accesses between adjacent levels of the 
hierarchy can differ by two or three orders of magnitude. The performance of a 
system is often limited not by the speed of the processor but by the performance 
of the memory subsystem. While compilers traditionally focus on optimizing 
the processor execution, more emphasis is now placed on making the memory 
hierarchy more effective. 

Using registers effectively is probably the single most important problem in 
optimizing a program. Unlike registers t ha t have to be managed explicitly in 
software, caches and physical memories are hidden from the instruction set and 
are managed by hardware. It has been found tha t cache-management policies 
implemented by hardware are not effective in some cases, especially in scientific 
code tha t has large da ta structures (arrays, typically). It is possible to improve 
the effectiveness of the memory hierarchy by changing the layout of the data , 
or changing the order of instructions accessing the data . We can also change 
the layout of code to improve the effectiveness of instruction caches. 
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1.5.3 Design of New Computer Architectures 

In the early days of computer architecture design, compilers were developed 
after the machines were built. Tha t has changed. Since programming in high-
level languages is the norm, the performance of a computer system is determined 
not by its raw speed but also by how well compilers can exploit its features. 
Thus, in modern computer architecture development, compilers are developed 
in the processor-design stage, and compiled code, running on simulators, is used 
to evaluate the proposed architectural features. 

R I S C 

One of the best known examples of how compilers influenced the design of 
computer architecture was the invention of the RISC (Reduced Instruction-Set 
Computer) architecture. Prior to this invention, the trend was to develop pro
gressively complex instruction sets intended to make assembly programming 
easier; these architectures were known as CISC (Complex Instruction-Set Com
puter) . For example, CISC instruction sets include complex memory-addressing 
modes to support data-structure accesses and procedure-invocation instructions 
tha t save registers and pass parameters on the stack. 

Compiler optimizations often can reduce these instructions to a small num
ber of simpler operations by eliminating the redundancies across complex in
structions. Thus, it is desirable to build simple instruction sets; compilers can 
use them effectively and the hardware is much easier to optimize. 

Most general-purpose processor architectures, including PowerPC, SPARC, 
MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the 
x86 architecture—the most popular microprocessor—has a CISC instruction 
set, many of the ideas developed for RISC machines are used in the imple
mentation of the processor itself. Moreover, the most effective way to use a 
high-performance x86 machine is to use just its simple instructions. 

Spec ia l i zed Arch i t ec tures 

Over the last three decades, many architectural concepts have been proposed. 
They include da ta flow machines, vector machines, VLIW (Very Long Instruc
tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro
cessors, systolic arrays, multiprocessors with shared memory, and multiproces
sors with distributed memory. The development of each of these architectural 
concepts was accompanied by the research and development of corresponding 
compiler technology. 

Some of these ideas have made their way into the designs of embedded 
machines. Since entire systems can fit on a single chip, processors need no 
longer be prepackaged commodity units, but can be tailored to achieve bet ter 
cost-effectiveness for a particular application. Thus, in contrast to general-
purpose processors, where economies of scale have led computer architectures 
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to converge, application-specific processors exhibit a diversity of computer ar
chitectures. Compiler technology is needed not only to support programming 
for these architectures, but also to evaluate proposed architectural designs. 

1.5.4 Program Translations 

While we normally think of compiling as a translation from a high-level lan
guage to the machine level, the same technology can be applied to t ranslate 
between different kinds of languages. The following are some of the important 
applications of program-translation techniques. 

Binary Translat ion 

Compiler technology can be used to translate the binary code for one machine 
to tha t of another, allowing a machine to run programs originally compiled for 
another instruction set. Binary translation technology has been used by various 
computer companies to increase the availability of software for their machines. 
In particular, because of the domination of the x86 personal-computer mar
ket, most software titles are available as x86 code. Binary translators have 
been developed to convert x86 code into both Alpha and Sparc code. Binary 
translation was also used by Transmeta Inc. in their implementation of the x86 
instruction set. Instead of executing the complex x86 instruction set directly in 
hardware, the Transmeta Crusoe processor is a VLIW processor tha t relies on 
binary translation to convert x86 code into native VLIW code. 

Binary translation can also be used to provide backward compatibility. 
When the processor in the Apple Macintosh was changed from the Motorola MC 
68040 to the PowerPC in 1994, binary translation was used to allow PowerPC 
processors run legacy MC 68040 code. 

Hardware Synthes i s 

Not only is most software written in high-level languages; even hardware de
signs are mostly described in high-level hardware description languages like 
Verilog and VHDL (Very high-speed integrated circuit Hardware Description 
Language). Hardware designs are typically described at the register t rans
fer level (RTL), where variables represent registers and expressions represent 
combinational logic. Hardware-synthesis tools translate RTL descriptions auto
matically into gates, which are then mapped to transistors and eventually to a 
physical layout. Unlike compilers for programming languages, these tools often 
take hours optimizing the circuit. Techniques to translate designs at higher 
levels, such as the behavior or functional level, also exist. 

D a t a b a s e Query Interpreters 

Besides specifying software and hardware, languages are useful in many other 
applications. For example, query languages, especially SQL (Structured Query 
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Language), are used to search databases. Database queries consist of predicates 
containing relational and boolean operators. They can be interpreted or com
piled into commands to search a database for records satisfying tha t predicate. 

C o m p i l e d S imula t ion 

Simulation is a general technique used in many scientific and engineering disci
plines to understand a phenomenon or to validate a design. Inputs to a simula
tor usually include the description of the design and specific input parameters 
for tha t particular simulation run. Simulations can be very expensive. We typi
cally need to simulate many possible design alternatives on many different input 
sets, and each experiment may take days to complete on a high-performance 
machine. Instead of writing a simulator tha t interprets the design, it is faster 
to compile the design to produce machine code tha t simulates tha t particular 
design natively. Compiled simulation can run orders of magnitude faster than 
an interpreter-based approach. Compiled simulation is used in many state-of-
the-art tools tha t simulate designs written in Verilog or VHDL. 

1.5.5 Software Productivity Tools 

Programs are arguably the most complicated engineering artifacts ever pro
duced; they consist of many many details, every one of which must be correct 
before the program will work completely. As a result, errors are rampant in 
programs; errors may crash a system, produce wrong results, render a system 
vulnerable to security attacks, or even lead to catastrophic failures in critical 
systems. Testing is the primary technique for locating errors in programs. 

An interesting and promising complementary approach is to use data-flow 
analysis to locate errors statically (that is, before the program is run) . Data
flow analysis can find errors along all the possible execution paths, and not 
just those exercised by the input da ta sets, as in the case of program testing. 
Many of the data-flow-analysis techniques, originally developed for compiler 
optimizations, can be used to create tools tha t assist programmers in their 
software engineering tasks. 

The problem of finding all program errors is undecidable. A data-flow analy
sis may be designed to warn the programmers of all possible statements violating 
a particular category of errors. But if most of these warnings are false alarms, 
users will not use the tool. Thus, practical error detectors are often neither 
sound nor complete. Tha t is, they may not find all the errors in the program, 
and not all errors reported are guaranteed to be real errors. Nonetheless, var
ious static analyses have been developed and shown to be effective in finding 
errors, such as dereferencing null or freed pointers, in real programs. The fact 
tha t error detectors may be unsound makes them significantly different from 
compiler optimizations. Optimizers must be conservative and cannot alter the 
semantics of the program under any circumstances. 



24 CHAPTER 1. INTRODUCTION 

In the balance of this section, we shall mention several ways in which pro
gram analysis, building upon techniques originally developed to optimize code 
in compilers, have improved software productivity. Of special importance are 
techniques tha t detect statically when a program might have a security vulner
ability. 

T y p e Checking 

Type checking is an effective and well-established technique to catch inconsis
tencies in programs. It can be used to catch errors, for example, where an 
operation is applied to the wrong type of object, or if parameters passed to a 
procedure do not match the signature of the procedure. Program analysis can 
go beyond finding type errors by analyzing the flow of da ta through a program. 
For example, if a pointer is assigned n u l l and then immediately dereferenced, 
the program is clearly in error. 

The same technology can be used to catch a variety of security holes, in 
which an attacker supplies a string or other da ta tha t is used carelessly by the 
program. A user-supplied string can be labeled with a type "dangerous." If 
this string is not checked for proper format, then it remains "dangerous," and 
if a string of this type is able to influence the control-flow of the code at some 
point in the program, then there is a potential security flaw. 

B o u n d s Check ing 

It is easier to make mistakes when programming in a lower-level language than 
a higher-level one. For example, many security breaches in systems are caused 
by buffer overflows in programs written in C. Because C does not have array-
bounds checks, it is up to the user to ensure tha t the arrays are not accessed 
out of bounds. Failing to check tha t the da ta supplied by the user can overflow 
a buffer, the program may be tricked into storing user da ta outside of the 
buffer. An attacker can manipulate the input da ta tha t causes the program to 
misbehave and compromise the security of the system. Techniques have been 
developed to find buffer overflows in programs, but with limited success. 

Had the program been written in a safe language tha t includes automatic 
range checking, this problem would not have occurred. The same data-flow 
analysis tha t is used to eliminate redundant range checks can also be used to 
locate buffer overflows. The major difference, however, is tha t failing to elimi
nate a range check would only result in a small run-time cost, while failing to 
identify a potential buffer overflow may compromise the security of the system. 
Thus, while it is adequate to use simple techniques to optimize range checks, so
phisticated analyses, such as tracking the values of pointers across procedures, 
are needed to get high-quality results in error detection tools. 
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M e m o r y - M a n a g e m e n t Tools 

Garbage collection is another excellent example of the tradeoff between effi
ciency and a combination of ease of programming and software reliability. Au
tomatic memory management obliterates all memory-management errors (e.g., 
"memory leaks"), which are a major source of problems in C and C + + pro
grams. Various tools have been developed to help programmers find memory 
management errors. For example, Purify is a widely used tool tha t dynamically 
catches memory management errors as they occur. Tools tha t help identify 
some of these problems statically have also been developed. 

1.6 Programming Language Basics 

In this section, we shall cover the most important terminology and distinctions 
tha t appear in the study of programming languages. It is not our purpose to 
cover all concepts or all the popular programming languages. We assume tha t 
the reader is familiar with at least one of C, C + + , C # , or Java, and may have 
encountered other languages as well. 

1.6.1 The Static/Dynamic Distinction 

Among the most important issues tha t we face when designing a compiler for 
a language is what decisions can the compiler make about a program. If a 
language uses a policy tha t allows the compiler to decide an issue, then we say 
tha t the language uses a static policy or tha t the issue can be decided at compile 
time. On the other hand, a policy tha t only allows a decision to be made when 
we execute the program is said to be a dynamic policy or to require a decision 
at run time. 

One issue on which we shall concentrate is the scope of declarations. The 
scope of a declaration of x is the region of the program in which uses of x refer to 
this declaration. A language uses static scope or lexical scope if it is possible to 
determine the scope of a declaration by looking only at the program. Otherwise, 
the language uses dynamic scope. With dynamic scope, as the program runs, 
the same use of x could refer to any of several different declarations of x. 

Most languages, such as C and Java, use static scope. We shall discuss static 
scoping in Section 1.6.3. 

E x a m p l e 1.3 : As another example of the s ta t ic /dynamic distinction, consider 
the use of the term "static" as it applies to da ta in a Java class declaration. In 
Java, a variable is a name for a location in memory used to hold a da ta value. 
Here, "static" refers not to the scope of the variable, but rather to the ability of 
the compiler to determine the location in memory where the declared variable 
can be found. A declaration like 

public static int x; 
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makes x a class variable and says tha t there is only one copy of x, no mat ter how 
many objects of this class are created. Moreover, the compiler can determine a 
location in memory where this integer x will be held. In contrast, had "static" 
been omitted from this declaration, then each object of the class would have its 
own location where x would be held, and the compiler could not determine all 
these places in advance of running the program. • 

1.6.2 Environments and States 

Another important distinction we must make when discussing programming 
languages is whether changes occurring as the program runs affect the values of 
da ta elements or affect the interpretation of names for tha t data . For example, 
the execution of an assignment such as x = y +1 changes the value denoted by 
the name x. More specifically, the assignment changes the value in whatever 
location is denoted by x. 

It may be less clear tha t the location denoted by x can change at run time. 
For instance, as we discussed in Example 1.3, if x is not a static (or "class") 
variable, then every object of the class has its own location for an instance 
of variable x. In tha t case, the assignment to x can change any of those "in
stance" variables, depending on the object to which a method containing tha t 
assignment is applied. 

environment state 

names locations values 
(variables) 

Figure 1.8: Two-stage mapping from names to values 

The association of names with locations in memory (the store) and then 
with values can be described by two mappings tha t change as the program runs 
(see Fig. 1.8): 

1. The environment is a mapping from names to locations in the store. Since 
variables refer to locations ("1-values" in the terminology of C), we could 
alternatively define an environment as a mapping from names to variables. 

2. The state is a mapping from locations in store to their values. Tha t is, the 
state maps 1-values to their corresponding r-values, in the terminology of 
C. 

Environments change according to the scope rules of a language. 

E x a m p l e 1 .4: Consider the C program fragment in Fig. 1.9. Integer i is 
declared a global variable, and also declared as a variable local to function /. 
When / is executing, the environment adjusts so tha t name i refers to the 
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int i; /* global i */ 

void f(---) { 

int i; /* local i */ 

i = 3; /* use of local i */ 

} 

x = i + 1; /* use of global i */ 

Figure 1.9: Two declarations of the name i 

location reserved for the i tha t is local to /, and any use of i, such as the 
assignment i = 3 shown explicitly, refers to tha t location. Typically, the local 
i is given a place on the run-time stack. 

Whenever a function g other than / is executing, uses of i cannot refer to 
the i tha t is local to /. Uses of name i in g must be within the scope of some 
other declaration of i. An example is the explicitly shown statement x = i+1, 
which is inside some procedure whose definition is not shown. The i in i + 1 
presumably refers to the global i. As in most languages, declarations in C must 
precede their use, so a function tha t comes before the global i cannot refer to 

The environment and state mappings in Fig. 1.8 are dynamic, but there are 
a few exceptions: 

1. Static versus dynamic binding of names to locations. Most binding of 
names to locations is dynamic, and we discuss several approaches to this 
binding throughout the section. Some declarations, such as the global i 
in Fig. 1.9, can be given a location in the store once and for all, as the 
compiler generates object code. 2 

2. Static versus dynamic binding of locations to values. The binding of lo
cations to values (the second stage in Fig. 1.8), is generally dynamic as 
well, since we cannot tell the value in a location until we run the program. 
Declared constants are an exception. For instance, the C definition 

2 Technically, the C compiler will assign a location in virtual memory for the global i, 
leaving it to the loader and the operating system to determine where in the physical memory 
of the machine i will be located. However, we shall not worry about "relocation" issues such 
as these, which have no impact on compiling. Instead, we treat the address space that the 
compiler uses for its output code as if it gave physical memory locations. 

it. • 

#define ARRAYSIZE 1000 
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Names, Identifiers, and Variables 

Although the terms "name" and "variable," often refer to the same thing, 
we use them carefully to distinguish between compile-time names and the 
run-time locations denoted by names. 

An identifier is a string of characters, typically letters or digits, tha t 
refers to (identifies) an entity, such as a da ta object, a procedure, a class, 
or a type. All identifiers are names, but not all names are identifiers. 
Names can also be expressions. For example, the name x.y might denote 
the field y of a structure denoted by x. Here, x and y are identifiers, while 
x.y is a name, but not an identifier. Composite names like x.y are called 
qualified names. 

A variable refers to a particular location of the store. It is common for 
the same identifier to be declared more than once; each such declaration 
introduces a new variable. Even if each identifier is declared just once, an 
identifier local to a recursive procedure will refer to different locations of 
the store at different times. 

binds the name ARRAYS IZE to the value 1000 statically. We can determine 
this binding by looking at the statement, and we know tha t it is impossible 
for this binding to change when the program executes. 

1.6.3 Static Scope and Block Structure 

Most languages, including C and its family, use static scope. The scope rules 
for C are based on program structure; the scope of a declaration is determined 
implicitly by where the declaration appears in the program. Later languages, 
such as C + + , Java, and C # , also provide explicit control over scopes through 
the use of keywords like publ ic , private , and pro tec ted . 

In this section we consider static-scope rules for a language with blocks, 
where a block is a grouping of declarations and statements. C uses braces { and 
} to delimit a block; the alternative use of b e g i n and e n d for the same purpose 
dates back to Algol. 

E x a m p l e 1.5 : To a first approximation, the C static-scope policy is as follows: 

1. A C program consists of a sequence of top-level declarations of variables 

and functions. 

2. Functions may have variable declarations within them, where variables 
include local variables and parameters. The scope of each such declaration 
is restricted to the function in which it appears. 
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Procedures, Functions, and Methods 

To avoid saying "procedures, functions, or methods," each time we want 
to talk about a subprogram tha t may be called, we shall usually refer to 
all of them as "procedures." The exception is tha t when talking explicitly 
of programs in languages like C tha t have only functions, we shall refer 
to them as "functions." Or, if we are discussing a language like Java tha t 
has only methods, we shall use tha t term instead. 

A function generally returns a value of some type (the "return type") , 
while a procedure does not return any value. C and similar languages, 
which have only functions, treat procedures as functions tha t have a special 
re turn type "void," to signify no return value. Object-oriented languages 
like Java and C + + use the term "methods." These can behave like either 
functions or procedures, but are associated with a particular class. 

3. The scope of a top-level declaration of a name x consists of the entire 
program tha t follows, with the exception of those statements tha t lie 
within a function tha t also has a declaration of x. 

The additional detail regarding the C static-scope policy deals with variable 
declarations within statements. We examine such declarations next and in 
Example 1.6. • 

In C, the syntax of blocks is given by 

1. One type of statement is a block. Blocks can appear anywhere tha t other 
types of statements, such as assignment statements, can appear. 

2. A block is a sequence of declarations followed by a sequence of statements, 
all surrounded by braces. 

Note tha t this syntax allows blocks to be nested inside each other. This 
nesting property is referred to as block structure. The C family of languages 
has block structure, except tha t a function may not be defined inside another 
function. 

We say tha t a declaration D "belongs" to a block B if B is the most closely 
nested block containing D; tha t is, D is located within B, but not within any 
block t ha t is nested within B. 

The static-scope rule for variable declarations in a block-structured lan
guages is as follows. If declaration D of name x belongs to block B, then the 
scope of D is all of B, except for any blocks B' nested to any depth within J5, 
in which x is redeclared. Here, x is redeclared in B' if some other declaration 
D' of the same name x belongs to B'. 
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An equivalent way to express this rule is to focus on a use of a name x. 
Let Bi, i?2 , • • • , Bk be all the blocks tha t surround this use of x, with Bk the 
smallest, nested within Bk-i, which is nested within Bk-2, and so on. Search 
for the largest i such tha t there is a declaration of x belonging to B^. This use 
of x refers to the declaration in B{. Alternatively, this use of x is within the 
scope of the declaration in Bi. 

m a i n Q { 
i n t a = 1; ^ 

i n t b = 1; 
{ 

f i n t b = 2; ^ 

i n t a = 
cout « 

3; 

a « b; 
B3 

J 
} 
{ 

i n t b -
cout << 

4; 

a « b ; 
B4 

J 
} 
cout << a « b; 

} 
v c o u t << a << b; 

} 

Figure 1.10: Blocks in a C + + program 

E x a m p l e 1 .6: The C + + program in Fig. 1.10 has four blocks, with several 
definitions of variables a and b. As a memory aid, each declaration initializes 
its variable to the number of the block to which it belongs. 

For instance, consider the declaration i n t a = 1 in block Bi. Its scope 
is all of Bi, except for those blocks nested (perhaps deeply) within B± tha t 
have their own declaration of a. Z?2, nested immediately within B±, does not 
have a declaration of a, but B3 does. B4 does not have a declaration of a, so 
block B3 is the only place in the entire program tha t is outside the scope of the 
declaration of the name a tha t belongs to B\. Tha t is, this scope includes B4 
and all of Z?2 except for the part of B2 tha t is within B3. The scopes of all five 
declarations are summarized in Fig. 1.11. 

From another point of view, let us consider the output statement in block 
B4 and bind the variables a and b used there to the proper declarations. The 
list of surrounding blocks, in order of increasing size, is B4,B2,Bi. Note tha t 
#3 does not surround the point in question. B4 has a declaration of b, so it 
is to this declaration tha t this use of b refers, and the value of 6 printed is 4. 
However, B4 does not have a declaration of o, so we next look at £?2- Tha t 
block does not have a declaration of a either, so we proceed to B\. Fortunately, 
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D E C L A R A T I O N S C O P E 

i n t a = 1 B I - B 3 

i n t b = 1 B ! - B 2 

i n t b = 2 Z?2 — B^ 

i n t a = 3 B3 

i n t b = 4 BA 

Figure 1.11: Scopes of declarations in Example 1.6 

there is a declaration i n t a = 1 belonging to tha t block, so the value of a 
printed is 1. Had there been no such declaration, the program would have been 
erroneous. • 

1.6.4 Explicit Access Control 

Classes and structures introduce a new scope for their members. If p is an 
object of a class with a field (member) x, then the use of x in p.x refers to 
field x in the class definition. In analogy with block structure, the scope of a 
member declaration x in a class C extends to any subclass C, except if C has 
a local declaration of the same name x. 

Through the use of keywords like publ ic , private , and pro tec ted , object-
oriented languages such as C + + or Java provide explicit control over access 
to member names in a superclass. These keywords support encapsulation by 
restricting access. Thus, private names are purposely given a scope tha t includes 
only the method declarations and definitions associated with tha t class and any 
"friend" classes (the C + + term). Protected names are accessible to subclasses. 
Public names are accessible from outside the class. 

In C + + , a class definition may be separated from the definitions of some 
or all of its methods. Therefore, a name x associated with the class C may 
have a region of the code tha t is outside its scope, followed by another region (a 
method definition) tha t is within its scope. In fact, regions inside and outside 
the scope may alternate, until all the methods have been defined. 

1.6.5 Dynamic Scope 

Technically, any scoping policy is dynamic if it is based on factor(s) tha t can 
be known only when the program executes. The term dynamic scope, however, 
usually refers to the following policy: a use of a name x refers to the declaration 
of x in the most recently called procedure with such a declaration. Dynamic 
scoping of this type appears only in special situations. We shall consider two ex
amples of dynamic policies: macro expansion in the C preprocessor and method 
resolution in object-oriented programming. 
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Declarations and Definitions 

The apparently similar terms "declaration" and "definition" for program-
ming-language concepts are actually quite different. Declarations tell us 
about the types of things, while definitions tell us about their values. Thus, 
i n t i is a declaration of i, while i = 1 is a definition of i. 

The difference is more significant when we deal with methods or other 
procedures. In C + + , a method is declared in a class definition, by giving 
the types of the arguments and result of the method (often called the 
signature for the method. The method is then defined, i.e., the code for 
executing the method is given, in another place. Similarly, it is common 
to define a C function in one file and declare it in other files where the 
function is used. 

E x a m p l e 1 .7: In the C program of Fig. 1.12, identifier a is a macro that 
stands for expression (a? + 1). But what is xl We cannot resolve x statically, 
tha t is, in terms of the program text. 

#def ine a (x+1) 

i n t x = 2 ; 

vo id b ( ) { i n t x = 1; p r i n t f ("0/.d\n", a ) ; } 

vo id c ( ) { p r i n t f ( " , / . d \ n " , a ) ; } 

vo id mainO { b ( ) ; c ( ) ; } 

Figure 1.12: A macro whose names must be scoped dynamically 

In fact, in order to interpret x, we must use the usual dynamic-scope rule. 
We examine all the function calls tha t are currently active, and we take the most 
recently called function tha t has a declaration of It is to this declaration tha t 
the use of x refers. 

In the example of Fig. 1.12, the function main first calls function 6. As b 
executes, it prints the value of the macro a. Since (x + 1) must be substi tuted 
for a, we resolve this use of x to the declaration i n t x=l in function b. The 
reason is tha t b has a declaration of x, so the (x + 1) in the p r i n t f in b refers 
to this x. Thus, the value printed is 1. 

After b finishes, and c is called, we again need to print the value of macro 
a. However, the only x accessible to c is the global x. The p r i n t f statement 
in c thus refers to this declaration of x, and value 2 is printed. • 

Dynamic scope resolution is also essential for polymorphic procedures, those 
tha t have two or more definitions for the same name, depending only on the 
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Analogy Between Static and Dynamic Scoping 

While there could be any number of static or dynamic policies for scoping, 
there is an interesting relationship between the normal (block-structured) 
static scoping rule and the normal dynamic policy. In a sense, the dynamic 
rule is to t ime as the static rule is to space. While the static rule asks us to 
find the declaration whose unit (block) most closely surrounds the physical 
location of the use, the dynamic rule asks us to find the declaration whose 
unit (procedure invocation) most closely surrounds the time of the use. 

types of the arguments. In some languages, such as ML (see Section 7.3.3), it 
is possible to determine statically types for all uses of names, in which case the 
compiler can replace each use of a procedure name p by a reference to the code 
for the proper procedure. However, in other languages, such as Java and C + + , 
there are times when the compiler cannot make tha t determination. 

E x a m p l e 1 .8 : A distinguishing feature of object-oriented programming is the 
ability of each object to invoke the appropriate method in response to a message. 
In other words, the procedure called when x.mQ is executed depends on the 
class of the object denoted by x at tha t time. A typical example is as follows: 

1. There is a class C with a method named m() . 

2. D is a subclass of C, and D has its own method named ra(). 

3. There is a use of m of the form x.mQ, where x is an object of class C. 

Normally, it is impossible to tell at compile time whether x will be of class 
C or of the subclass D. If the method application occurs several times, it is 
highly likely tha t some will be on objects denoted by x tha t are in class C but 
not D, while others will be in class D. It is not until run-time tha t it can be 
decided which definition of m is the right one. Thus, the code generated by the 
compiler must determine the class of the object x, and call one or the other 
method named m. • 

1.6.6 Parameter Passing Mechanisms 

All programming languages have a notion of a procedure, but they can differ 
in how these procedures get their arguments. In this section, we shall consider 
how the actual parameters (the parameters used in the call of a procedure) 
are associated with the formal parameters (those used in the procedure defi
nition). Which mechanism is used determines how the calling-sequence code 
t reats parameters . The great majority of languages use either "call-by-value," 
or "call-by-reference," or both. We shall explain these terms, and another 
method known as "call-by-name," tha t is primarily of historical interest. 
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Cal l -by-Value 

In call-by-value, the actual parameter is evaluated (if it is an expression) or 
copied (if it is a variable). The value is placed in the location belonging to 
the corresponding formal parameter of the called procedure. This method is 
used in C and Java, and is a common option in C + + , as well as in most 
other languages. Call-by-value has the effect tha t all computation involving the 
formal parameters done by the called procedure is local to tha t procedure, and 
the actual parameters themselves cannot be changed. 

Note, however, tha t in C we can pass a pointer to a variable to allow tha t 
variable to be changed by the callee. Likewise, array names passed as param
eters in C, C + + , or Java give the called procedure what is in effect a pointer 
or reference to the array itself. Thus, if a is the name of an array of the calling 
procedure, and it is passed by value to corresponding formal parameter x, then 
an assignment such as x [ i ] = 2 really changes the array element a[2]. The 
reason is that , although x gets a copy of the value of a, tha t value is really a 
pointer to the beginning of the area of the store where the array named a is 
located. 

Similarly, in Java, many variables are really references, or pointers, to the 
things they stand for. This observation applies to arrays, strings, and objects 
of all classes. Even though Java uses call-by-value exclusively, whenever we 
pass the name of an object to a called procedure, the value received by tha t 
procedure is in effect a pointer to the object. Thus, the called procedure is able 
to affect the value of the object itself. 

Cal l -by-Reference 

In call-by-reference, the address of the actual parameter is passed to the callee as 
the value of the corresponding formal parameter. Uses of the formal parameter 
in the code of the callee are implemented by following this pointer to the location 
indicated by the caller. Changes to the formal parameter thus appear as changes 
to the actual parameter. 

If the actual parameter is an expression, however, then the expression is 
evaluated before the call, and its value stored in a location of its own. Changes 
to the formal parameter change this location, but can have no effect on the 
da ta of the caller. 

Call-by-reference is used for "ref" parameters in C + + and is an option in 
many other languages. It is almost essential when the formal parameter is a 
large object, array, or structure. The reason is tha t strict call-by-value requires 
tha t the caller copy the entire actual parameter into the space belonging to 
the corresponding formal parameter. This copying gets expensive when the 
parameter is large. As we noted when discussing call-by-value, languages such 
as Java solve the problem of passing arrays, strings, or other objects by copying 
only a reference to those objects. The effect is tha t Java behaves as if it used 
call-by-reference for anything other than a basic type such as an integer or real. 
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C a l l - b y - N a m e 

A third mechanism — call-by-name — was used in the early programming 
language Algol 60. It requires tha t the callee execute as if the actual parameter 
were substi tuted literally for the formal parameter in the code of the callee, as 
if the formal parameter were a macro standing for the actual parameter (with 
renaming of local names in the called procedure, to keep them distinct). When 
the actual parameter is an expression rather than a variable, some unintuitive 
behaviors occur, which is one reason this mechanism is not favored today. 

1.6.7 Aliasing 

There is an interesting consequence of call-by-reference parameter passing or 
its simulation, as in Java, where references to objects are passed by value. It 
is possible tha t two formal parameters can refer to the same location; such 
variables are said to be aliases of one another. As a result, any two variables, 
which may appear to take their values from two distinct formal parameters, can 
become aliases of each other, as well. 

E x a m p l e 1 .9 : Suppose a is an array belonging to a procedure p, and p calls 
another procedure q(x,y) with a call q(a,a). Suppose also tha t parameters 
are passed by value, but tha t array names are really references to the location 
where the array is stored, as in C or similar languages. Now, x and y have 
become aliases of each other. The important point is tha t if within q there is 
an assignment x [10 ] = 2, then the value of y[10] also becomes 2. • 

It turns out tha t understanding aliasing and the mechanisms tha t create it 
is essential if a compiler is to optimize a program. As we shall see start ing in 
Chapter 9, there are many situations where we can only optimize code if we 
can be sure certain variables are not aliased. For instance, we might determine 
tha t x = 2 is the only place that variable x is ever assigned. If so, then we can 
replace a use of x by a use of 2; for example, replace a = x+3 by the simpler 
a = 5. But suppose there were another variable y tha t was aliased to x. Then 
an assignment y = 4 might have the unexpected effect of changing x. It might 
also mean tha t replacing a = x+3 by a = 5 was a mistake; the proper value of 
a could be 7 there. 

1.6.8 Exercises for Section 1.6 

Exerc i se 1 . 6 . 1 : For the block-structured C code of Fig. 1.13(a), indicate the 
values assigned to w, x, y, and z. 

Exerc i se 1 .6 .2 : Repeat Exercise 1.6.1 for the code of Fig. 1.13(b). 

Exerc i se 1 .6 .3 : For the block-structured code of Fig. 1.14, assuming the usual 
static scoping of declarations, give the scope for each of the twelve declarations. 
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int w, x, y, z; 

int i = 4; int j = 5; 

< int j = 7; 
i = 6; 

w = i + j; 
} 
x = i + j; 
{ int i = 8; 

y = i + j; 
} 
z = i + j; 

(a) Code for Exercise 1.6.1 

int w, x, y, z; 

int i = 3; int j = 4; 

{ int i = 5; 

w = i + j; 

} 
x = i + j; 

{ int j = 6; 

i = 7; 

y = i + j; 
} 
z = i + j; 

(b) Code for Exercise 1.6.2 

Figure 1.13: Block-structured code 

int w, x, y, z; 

{ int x, z; 

{ int w, x; 

} 
{ int w, x; 

{ int y, z; 

} 

/* Block Bl */ 

/* Block B2 */ 

/* Block B3 */ } 

/* Block B4 */ 

/* Block B5 */ } 

Figure 1.14: Block structured code for Exercise 1.6.3 

Exercise 1 .6 .4 : Wha t is printed by the following C code? 

#define a (x+1) 

int x = 2; 

void b() { x = a; printf ("°/,d\nM, x) ; } 

void c() { int x = 1; printf ("°/,d\n"), a; > 

void mainO { b(); c(); } 

1.7 Summary of Chapter 1 
• Language Processors. An integrated software development environment 

includes many different kinds of language processors such as compilers, 
interpreters, assemblers, linkers, loaders, debuggers, profilers. 

• Compiler Phases. A compiler operates as a sequence of phases, each of 
which transforms the source program from one intermediate representa
tion to another. 



1.7. SUMMARY OF CHAPTER 1 37 

4> Machine and Assembly Languages. Machine languages were the first-
generation programming languages, followed by assembly languages. Pro
gramming in these languages was time consuming and error prone. 

4 Modeling in Compiler Design. Compiler design is one of the places where 
theory has had the most impact on practice. Models tha t have been found 
useful include automata , grammars, regular expressions, trees, and many 
others. 

4 Code Optimization. Although code cannot truly be "optimized," the sci
ence of improving the efficiency of code is both complex and very impor
tant . It is a major portion of the study of compilation. 

4 Higher-Level Languages. As time goes on, programming languages take 
on progressively more of the tasks that formerly were left to the program
mer, such as memory management, type-consistency checking, or parallel 
execution of code. 

4 Compilers and Computer Architecture. Compiler technology influences 
computer architecture, as well as being influenced by the advances in ar
chitecture. Many modern innovations in architecture depend on compilers 
being able to extract from source programs the opportunities to use the 
hardware capabilities effectively. 

4 Software Productivity and Software Security. The same technology tha t 
allows compilers to optimize code can be used for a variety of program-
analysis tasks, ranging from detecting common program bugs to discov
ering tha t a program is vulnerable to one of the many kinds of intrusions 
tha t "hackers" have discovered. 

4 Scope Rules. The scope of a declaration of x is the context in which uses 
of x refer to this declaration. A language uses static scope or lexical scope 
if it is possible to determine the scope of a declaration by looking only at 
the program. Otherwise, the language uses dynamic scope. 

4 Environments. The association of names with locations in memory and 
then with values can be described in terms of environments, which map 
names to locations in store, and states, which map locations to their 
values. 

4- Block Structure. Languages tha t allow blocks to be nested are said to 
have block structure. A name a: in a nested block B is in the scope of a 
declaration D of x in an enclosing block if there is no other declaration 
of x in an intervening block. 

4 Parameter Passing. Parameters are passed from a calling procedure to 
the callee either by value or by reference. When large objects are passed 
by value, the values passed are really references to the objects themselves, 
resulting in an effective call-by-reference. 
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• Aliasing. When parameters are (effectively) passed by reference, two for
mal parameters can refer to the same object. This possibility allows a 
change in one variable to change another. 

1.8 References for Chapter 1 

For the development of programming languages tha t were created and in use 
by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages tha t 
were created by 1982, including C, C + + , Pascal, and Smalltalk, see [1]. 

The GNU Compiler Collection, gcc, is a popular source of open-source 
compilers for C, C + + , Fortran, Java, and other languages [2]. Phoenix is a 
compiler-construction toolkit tha t provides an integrated framework for build
ing the program analysis, code generation, and code optimization phases of 
compilers discussed in this book [3]. 

For more information about programming language concepts, we recom
mend [5,6]. For more on computer architecture and how it impacts compiling, 
we suggest [4]. 

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM 
Press, New York, 1996. 

2. http://gcc.gnu.org/. 

3. http://research.microsoft.com/phoenix/default.aspx . 

4. Hennessy, J. L. and D. A. Patterson, Computer Organization and De
sign: The Hardware/Software Interface, Morgan-Kaufmann, San Fran
cisco, CA, 2004. 

5. Scott, M. L., Programming Language Pragmatics, second edition, Morgan-
Kaufmann, San Francisco, CA, 2006. 

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison-

Wesley, 1996. 

7. Wexelblat, R. L., History of Programming Languages, Academic Press, 

New York, 1981. 

http://gcc.gnu.org/
http://research.microsoft.com/phoenix/default.aspx


Chapter 2 

A Simple Syntax-Directed 
Translator 

This chapter is an introduction to the compiling techniques in Chapters 3 
through 6 of this book. It illustrates the techniques by developing a working 
Java program tha t translates representative programming language statements 
into three-address code, an intermediate representation. In this chapter, the 
emphasis is on the front end of a compiler, in particular on lexical analysis, 
parsing, and intermediate code generation. Chapters 7 and 8 show how to 
generate machine instructions from three-address code. 

We start small by creating a syntax-directed translator tha t maps infix arith
metic expressions into postfix expressions. We then extend this translator to 
map code fragments as shown in Fig. 2.1 into three-address code of the form 
in Fig. 2.2. 

The working Java translator appears in Appendix A. The use of Java is 
convenient, but not essential. In fact, the ideas in this chapter predate the 
creation of both Java and C. 

{ 
i n t i ; i n t j ; f l o a t [ 1 0 0 ] a ; f l o a t v ; f l o a t x ; 

w h i l e ( t r u e ) { 
do i = i + 1 ; w h i l e ( a [ i ] < v ); 
do j = j - 1 ; w h i l e ( a [ j ] > v ); 
if ( i >= j ) b r e a k ; 
x = a [ i ] ; a [ i ] = a [ j ] ; a [ j ] = x; 

} 
} 

Figure 2.1: A code fragment to be translated 

39 
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1 

2 

3: 

4: 

5: 

6: 

7: 
8: 
9: 

10: 

11: 

12: 

13: 

14: 

goto 1 

i = i + 1 

tl = a [ i ] 

if tl < v goto 

J = J - 1 

t2 - a [ j ] 
if t2 > v goto 

ifFalse i >= j 

goto 14 

x = a [ i ] 

t3 = a [ j ] 

a [ i ] = t3 

a [ j ] = x 

4 

goto 9 

1 

Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1 

The analysis phase of a compiler breaks up a source program into constituent 
pieces and produces an internal representation for it, called intermediate code. 
The synthesis phase translates the intermediate code into the target program. 

Analysis is organized around the "syntax" of the language to be compiled. 
The syntax of a programming language describes the proper form of its pro
grams, while the semantics of the language defines what its programs mean; tha t 
is, what each program does when it executes. For specifying syntax, we present 
a widely used notation, called context-free grammars or BNF (for Backus-Naur 
Form) in Section 2.2. With the notations currently available, the semantics of 
a language is much more difficult to describe than the syntax. For specifying 
semantics, we shall therefore use informal descriptions and suggestive examples. 

Besides specifying the syntax of a language, a context-free grammar can be 
used to help guide the translation of programs. In Section 2.3, we introduce 
a grammar-oriented compiling technique known as syntax-directed translation. 
Parsing or syntax analysis is introduced in Section 2.4. 

The rest of this chapter is a quick tour through the model of a compiler 
front end in Fig. 2.3. We begin with the parser. For simplicity, we consider the 
syntax-directed translation of infix expressions to postfix form, a notation in 
which operators appear after their operands. For example, the postfix form of 
the expression 9 - 5 + 2 is 95 - 2+ . Translation into postfix form is rich enough 
to illustrate syntax analysis, yet simple enough tha t the translator is shown in 
full in Section 2.5. The simple translator handles expressions like 9 - 5 + 2, 
consisting of digits separated by plus and minus signs. One reason for s tart ing 
with such simple expressions is tha t the syntax analyzer can work directly with 
the individual characters for operators and operands. 

2.1 Introduction 
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source Lexical tokens 
Parser 

syntax Intermediate 
Code 

Generator 

three-address 

program Analyzer 
Parser 

tree 

Intermediate 
Code 

Generator code 

Symbol 
Table 

Figure 2.3: A model of a compiler front end 

A lexical analyzer allows a translator to handle multicharacter constructs 
like identifiers, which are written as sequences of characters, but are t reated 
as units called tokens during syntax analysis; for example, in the expression 
c o u n t + 1 , the identifier count is t reated as a unit. The lexical analyzer in 
Section 2.6 allows numbers, identifiers, and "white space" (blanks, tabs , and 
newlines) to appear within expressions. 

Next, we consider intermediate-code generation. Two forms of intermedi
ate code are illustrated in Fig. 2.4. One form, called abstract syntax trees or 
simply syntax trees, represents the hierarchical syntactic structure of the source 
program. In the model in Fig. 2.3, the parser produces a syntax tree, tha t 
is further translated into three-address code. Some compilers combine parsing 
and intermediate-code generation into one component. 

do-while 

body > 

i = i + 1 

tl = a [ i ] 

if tl < v goto 1 

assign (b) 

+ 

(a) 

Figure 2.4: Intermediate code for "do i = i + 1; w h i l e ( a [ i ] < v ) ; " 

The root of the abstract syntax tree in Fig. 2.4(a) represents an entire do-
while loop. The left child of the root represents the body of the loop, which 
consists of only the assignment i = i + 1 ; . The right child of the root repre
sents the condition a [ i ] <v. An implementation of syntax trees appears in 
Section 2.8(a). 

The other common intermediate representation, shown in Fig. 2.4(b), is a 
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sequence of "three-address" instructions; a more complete example appears in 
Fig. 2.2. This form of intermediate code takes its name from instructions of 
the form x = y op z, where op is a binary operator, y and z the are addresses 
for the operands, and x is the address for the result of the operation. A three-
address instruction carries out at most one operation, typically a computation, 
a comparison, or a branch. 

In Appendix A, we put the techniques in this chapter together to build a 
compiler front end in Java. The front end translates statements into assembly-
level instructions. 

2.2 Syntax Definition 

In this section, we introduce a notation — the "context-free grammar," or 
"grammar" for short — tha t is used to specify the syntax of a language. Gram
mars will be used throughout this book to organize compiler front ends. 

A grammar naturally describes the hierarchical s tructure of most program
ming language constructs. For example, an if-else statement in Java can have 
the form 

if ( expression ) statement e l se s tatement 

Tha t is, an if-else statement is the concatenation of the keyword if, an open
ing parenthesis, an expression, a closing parenthesis, a s tatement, the keyword 
else , and another statement. Using the variable expr to denote an expres
sion and the variable stmt to denote a statement, this structuring rule can be 
expressed as 

stmt —> if ( expr ) stmt e l se stmt 

in which the arrow may be read as "can have the form." Such a rule is called a 
production. In a production, lexical elements like the keyword if and the paren
theses are called terminals. Variables like expr and stmt represent sequences of 
terminals and are called nonterminals. 

2.2.1 Definition of Grammars 

A context-free grammar has four components: 

1. A set of terminal symbols, sometimes referred to as "tokens." The termi
nals are the elementary symbols of the language defined by the grammar. 

2. A set of nonterminals, sometimes called "syntactic variables." Each non
terminal represents a set of strings of terminals, in a manner we shall 
describe. 

3. A set of productions, where each production consists of a nonterminal, 
called the head or left side of the production, an arrow, and a sequence of 
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Tokens Versus Terminals 

In a compiler, the lexical analyzer reads the characters of the source pro
gram, groups them into lexically meaningful units called lexemes, and pro
duces as output tokens representing these lexemes. A token consists of two 
components, a token name and an a t t r ibute value. The token names are 
abstract symbols tha t are used by the parser for syntax analysis. Often, 
we shall call these token names terminals, since they appear as terminal 
symbols in the grammar for a programming language. The a t t r ibute value, 
if present, is a pointer to the symbol table tha t contains additional infor
mation about the token. This additional information is not par t of the 
grammar, so in our discussion of syntax analysis, often we refer to tokens 
and terminals synonymously. 

terminals and /or nonterminals, called the body or right side of the produc
tion. The intuitive intent of a production is to specify one of the written 
forms of a construct; if the head nonterminal represents a construct, then 
the body represents a writ ten form of the construct. 

4. A designation of one of the nonterminals as the start symbol. 

We specify grammars by listing their productions, with the productions 
for the start symbol listed first. We assume tha t digits, signs such as < and 
<=, and boldface strings such as whi le are terminals. An italicized name is a 
nonterminal, and any nonitalicized name or symbol may be assumed to be a 
terminal . 1 For notational convenience, productions with the same nonterminal 
as the head can have their bodies grouped, with the alternative bodies separated 
by the symbol |, which we read as "or." 

E x a m p l e 2 . 1 : Several examples in this chapter use expressions consisting of 
digits and plus and minus signs; e.g., strings such as 9-5+2, 3 - 1 , or 7. Since a 
plus or minus sign must appear between two digits, we refer to such expressions 
as "lists of digits separated by plus or minus signs." The following grammar 
describes the syntax of these expressions. The productions are: 

list -> list + digit (2.1) 

list -+ list - digit (2.2) 

list -»• digit (2.3) 

digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (2.4) 

1 Individual italic letters will be used for additional purposes, especially when grammars 
are studied in detail in Chapter 4. For example, we shall use X, Y, and Z to talk about a 
symbol that is either a terminal or a nonterminal. However, any italicized name containing 
two or more characters will continue to represent a nonterminal. 
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The bodies of the three productions with nonterminal list as head equiva-
lently can be grouped: 

list -+ list + digit | list - digit | digit 

According to our conventions, the terminals of the grammar are the symbols 

+ - 0 1 2 3 4 5 6 7 8 9 

The nonterminals are the italicized names list and digit, with list being the start 
symbol because its productions are given first. • 

We say a production is for a nonterminal if the nonterminal is the head of 
the production. A string of terminals is a sequence of zero or more terminals. 
The string of zero terminals, written as e, is called the empty s t r ing. 2 

2.2.2 Derivations 

A grammar derives strings by beginning with the start symbol and repeatedly 
replacing a nonterminal by the body of a production for tha t nonterminal. The 
terminal strings tha t can be derived from the start symbol form the language 
defined by the grammar. 

E x a m p l e 2 . 2 : The language defined by the grammar of Example 2.1 consists 
of lists of digits separated by plus and minus signs. The ten productions for the 
nonterminal digit allow it to stand for any of the terminals 0 , 1 , . . . , 9 . From 
production (2.3), a single digit by itself is a list. Productions (2.1) and (2.2) 
express the rule tha t any list followed by a plus or minus sign and then another 
digit makes up a new list. 

Productions (2.1) to (2.4) are all we need to define the desired language. 
For example, we can deduce tha t 9-5+2 is a list as follows. 

a) 9 is a list by production (2.3), since 9 is a digit. 

b) 9-5 is a list by production (2.2), since 9 is a list and 5 is a digit. 

c) 9-5+2 is a list by production (2.1), since 9-5 is a list and 2 is a digit. 

• 

E x a m p l e 2 . 3 : A somewhat different sort of list is the list of parameters in a 
function call. In Java, the parameters are enclosed within parentheses, as in 
the call max(x ,y) of function max with parameters x and y. One nuance of such 
lists is tha t an empty list of parameters may be found between the terminals 
( and ). We may start to develop a grammar for such sequences with the 
productions: 

2Technically, e can be a string of zero symbols from any alphabet (collection of symbols). 
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call ->• id ( optparams ) 
optparams -> params \ e 

params —> params , param \ param 

Note tha t the second possible body for optparams ("optional parameter list") 
is e, which stands for the empty string of symbols. Tha t is, optparams can be 
replaced by the empty string, so a call can consist of a function name followed 
by the two-terminal string ( ) . Notice tha t the productions for params are 
analogous to those for list in Example 2.1, with comma in place of the arithmetic 
operator + or -, and param in place of digit. We have not shown the productions 
for param, since parameters are really arbitrary expressions. Shortly, we shall 
discuss the appropriate productions for the various language constructs, such 
as expressions, statements, and so on. • 

Parsing is the problem of taking a string of terminals and figuring out how 
to derive it from the start symbol of the grammar, and if it cannot be derived 
from the start symbol of the grammar, then reporting syntax errors within the 
string. Parsing is one of the most fundamental problems in all of compiling; 
the main approaches to parsing are discussed in Chapter 4. In this chapter, for 
simplicity, we begin with source programs like 9-5+2 in which each character 
is a terminal; in general, a source program has multicharacter lexemes tha t are 
grouped by the lexical analyzer into tokens, whose first components are the 
terminals processed by the parser. 

2.2.3 Parse Trees 

A parse tree pictorially shows how the start symbol of a grammar derives a 
string in the language. If nonterminal A has a production A -> XYZ, then a 
parse tree may have an interior node labeled A with three children labeled X, 
Y, and Z, from left to right: 

A 

X Y Z 

Formally, given a context-free grammar, a parse tree according to the gram
mar is a tree with the following properties: 

1. The root is labeled by the s tar t symbol. 

2. Each leaf is labeled by a terminal or by e. 

3. Each interior node is labeled by a nonterminal. 

4. If A is the nonterminal labeling some interior node and X\, X2, • • • , Xn are 
the labels of the children of tha t node from left to right, then there must 
be a production A —> X1X2 • • • Xn. Here, X\,X2,.. • ,Xn each stand 
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Tree Terminology 

Tree da ta structures figure prominently in compiling. 

• A tree consists of one or more nodes. Nodes may have labels, which 
in this book typically will be grammar symbols. When we draw a 
tree, we often represent the nodes by these labels only. 

• Exactly one node is the root. All nodes except the root have a unique 
parent; the root has no parent. When we draw trees, we place the 
parent of a node above tha t node and draw an edge between them. 
The root is then the highest (top) node. 

• If node N is the parent of node M, then M is a child of N. The 
children of one node are called siblings. They have an order, from 
the left, and when we draw trees, we order the childen of a given 
node in this manner. 

• A node with no children is called a leaf. Other nodes — those with 
one or more children — are interior nodes. 

• A descendant of a node N is either N itself, a child of N, a child of 
a child of N, and so on, for any number of levels. We say node N is 
an ancestor of node M if M is a descendant of N. 

for a symbol tha t is either a terminal or a nonterminal. As a special case, 
if A ->• e is a production, then a node labeled A may have a single child 
labeled e. 

E x a m p l e 2 . 4 : The derivation of 9-5+2 in Example 2.2 is illustrated by the 
tree in Fig. 2.5. Each node in the tree is labeled by a grammar symbol. An 
interior node and its children correspond to a production; the interior node 
corresponds to the head of the production, the children to the body. 

In Fig. 2.5, the root is labeled list, the start symbol of the grammar in 
Example 2.1. The children of the root are labeled, from left to right, list, +, 
and digit. Note tha t 

list —>• list + digit 

is a production in the grammar of Example 2.1. The left child of the root is 
similar to the root, with a child labeled - instead of +. The three nodes labeled 
digit each have one child tha t is labeled by a digit. • 

From left to right, the leaves of a parse tree form the yield of the tree, which 
is the string generated or derived from the nonterminal at the root of the parse 
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list 

digit list 

list digit 

digit 

9 5 + 2 

Figure 2.5: Parse tree for 9-5+2 according to the grammar in Example 2.1 

tree. In Fig. 2.5, the yield is 9-5+2; for convenience, all the leaves are shown 
at the bot tom level. Henceforth, we shall not necessarily line up the leaves in 
this way. Any tree imparts a natural left-to-right order to its leaves, based on 
the idea tha t if X and Y are two children with the same parent, and X is to 
the left of y, then all descendants of X are to the left of descendants of Y. 

Another definition of the language generated by a grammar is as the set of 
strings tha t can be generated by some parse tree. The process of finding a parse 
tree for a given string of terminals is called parsing tha t string. 

2.2.4 Ambiguity 

We have to be careful in talking about the structure of a string according to a 
grammar. A grammar can have more than one parse tree generating a given 
string of terminals. Such a grammar is said to be ambiguous. To show tha t a 
grammar is ambiguous, all we need to do is find a terminal string tha t is the 
yield of more than one parse tree. Since a string with more than one parse tree 
usually has more than one meaning, we need to design unambiguous grammars 
for compiling applications, or to use ambiguous grammars with additional rules 
to resolve the ambiguities. 

E x a m p l e 2 . 5 : Suppose we used a single nonterminal string and did not dis
tinguish between digits and lists, as in Example 2.1. We could have writ ten the 
grammar 

string -» string + string \ string - string | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 J 9 

Merging the notion of digit and list into the nonterminal string makes superficial 
sense, because a single digit is a special case of a list. 

However, Fig. 2.6 shows tha t an expression like 9-5+2 has more than one 
parse tree with this grammar. The two trees for 9-5+2 correspond to the two 
ways of parenthesizing the expression: (9 -5 )+2 and 9 - ( 5 + 2 ) . This second 
parenthesization gives the expression the unexpected value 2 rather than the 
customary value 6. The grammar of Example 2.1 does not permit this inter
pretation. • 
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string string 

/ l \ 
string + string string - string 

i / I \ 
string string 2 9 string + string 

9 5 5 2 

Figure 2.6: Two parse trees for 9-5+2 

2.2.5 Associativity of Operators 

By convention, 9+5+2 is equivalent to (9+5)+2 and 9 - 5 - 2 is equivalent to 
( 9 - 5 ) - 2 . When an operand like 5 has operators to its left and right, con
ventions are needed for deciding which operator applies to tha t operand. We 
say tha t the operator + associates to the left, because an operand with plus signs 
on both sides of it belongs to the operator to its left. In most programming 
languages the four arithmetic operators, addition, subtraction, multiplication, 
and division are left-associative. 

Some common operators such as exponentiation are right-associative. As 
another example, the assignment operator = in C and its descendants is right-
associative; tha t is, the expression a=b=c is t reated in the same way as the 
expression a=(b=c) . 

Strings like a=b=c with a right-associative operator are generated by the 
following grammar: 

The contrast between a parse tree for a left-associative operator like - and 
a parse tree for a right-associative operator like = is shown by Fig. 2.7. Note 
tha t the parse tree for 9 - 5 - 2 grows down towards the left, whereas the parse 
tree for a-b=c grows down towards the right. 

2.2.6 Precedence of Operators 

Consider the expression 9+5*2. There are two possible interpretations of this 
expression: (9+5)*2 or 9+(5*2) . The associativity rules for + and * apply to 
occurrences of the same operator, so they do not resolve this ambiguity. Rules 
defining the relative precedence of operators are needed when more than one 
kind of operator is present. 

We say tha t * has higher precedence than + if * takes its operands before + 
does. In ordinary arithmetic, multiplication and division have higher precedence 
than addition and subtraction. Therefore, 5 is taken by * in both 9+5*2 and 
9*5+2; i.e., the expressions are equivalent to 9+(5*2) and (9*5)+2, respectively. 

right ->• letter = right | letter 
letter -> a | b | • • • | z 
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list right 

list - digit letter = right 

Figure 2.7: Parse trees for left- and right-associative grammars 

E x a m p l e 2.6 : A grammar for arithmetic expressions can be constructed from 
a table showing the associativity and precedence of operators. We start with 
the four common arithmetic operators and a precedence table, showing the 
operators in order of increasing precedence. Operators on the same line have 
the same associativity and precedence: 

left-associative: + -
left-associative: * / 

We create two nonterminals expr and term for the two levels of precedence, 
and an extra nonterminal factor for generating basic units in expressions. The 
basic units in expressions are presently digits and parenthesized expressions. 

factor —> digit | ( expr) 

Now consider the binary operators, * and /, tha t have the highest prece
dence. Since these operators associate to the left, the productions are similar 
to those for lists tha t associate to the left. 

term —> term * factor 
| term / factor 
| factor 

Similarly, expr generates lists of terms separated by the additive operators. 

expr —> expr + term 
| expr - term 
| term 

The resulting grammar is therefore 

expr -» expr + term \ expr - term \ term 
term -> term * factor | term / factor | factor 

factor ->• digit | ( expr) 
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Generalizing the Expression Grammar of Example 2.6 

We can think of a factor as an expression tha t cannot be "torn apar t" by 
any operator. By "torn apart ," we mean tha t placing an operator next 
to any factor, on either side, does not cause any piece of the factor, other 
than the whole, to become an operand of tha t operator. If the factor is a 
parenthesized expression, the parentheses protect against such "tearing," 
while if the factor is a single operand, it cannot be torn apart . 

A term (that is not also a factor) is an expression tha t can be torn 
apart by operators of the highest precedence: * and /, but not by the 
lower-precedence operators. An expression (that is not a te rm or factor) 
can be torn apart by any operator. 

We can generalize this idea to any number n of precedence levels. We 
need n+1 nonterminals. The first, like factor in Example 2.6, can never be 
torn apart . Typically, the production bodies for this nonterminal are only 
single operands and parenthesized expressions. Then, for each precedence 
level, there is one nonterminal representing expressions tha t can be torn 
apart only by operators at t ha t level or higher. Typically, the productions 
for this nonterminal have bodies representing uses of the operators at tha t 
level, plus one body tha t is just the nonterminal for the next higher level. 

With this grammar, an expression is a list of terms separated by either + or 
- signs, and a term is a list of factors separated by * or / signs. Notice tha t 
any parenthesized expression is a factor, so with parentheses we can develop 
expressions tha t have arbitrarily deep nesting (and arbitrarily deep trees). • 

E x a m p l e 2 . 7 : Keywords allow us to recognize statements, since most state
ment begin with a keyword or a special character. Exceptions to this rule 
include assignments and procedure calls. The statements defined by the (am
biguous) grammar in Fig. 2.8 are legal in Java. 

In the first production for stmt, the terminal id represents any identifier. 
The productions for expression are not shown. The assignment statements 
specified by the first production are legal in Java, although Java t reats = as an 
assignment operator tha t can appear within an expression. For example, Java 
allows a = b = c, which this grammar does not. 

The nonterminal stmts generates a possibly empty list of statements. The 
second production for stmts generates the empty list e. The first production 
generates a possibly empty list of statements followed by a statement. 

The placement of semicolons is subtle; they appear at the end of every body 
tha t does not end in stmt. This approach prevents the build-up of semicolons 
after statements such as if- and while-, which end with nested substatements. 
When the nested substatement is an assignment or a do-while, a semicolon will 
be generated as par t of the substatement. • 
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stmt —>• id = expression ; 
| if ( expression ) s£ra£ 
| if ( expression ) stmi e lse stmt 
| whi le ( expression ) sirai 
| do stmt whi le ( expression ) ; 
| { stmts } 

stmts ->• s£m£s s£ra£ 

Figure 2.8: A grammar for a subset of Java statements 

2.2.7 Exercises for Section 2.2 

Exerc i se 2 . 2 . 1 : Consider the context-free grammar 

S -> 5 5 + | 5 5 * | a 

a) Show how the string aa+a* can be generated by this grammar. 

b) Construct a parse tree for this string. 

c) Wha t language does this grammar generate? Justify your answer. 

Exerc i se 2 . 2 . 2 : Wha t language is generated by the following grammars? In 
each case justify your answer. 

a) 5 - 4 0 5 1 | 0 1 

b) 5 -»• + 5 5 | - 5 5 | a 

c) 5 -> 5 ( 5 ) 5 | e 

d) 5 -» a 5 b 5 | b 5 a 5 | e 

e) 5 -> a | 5 + 5 | 5 5 | 5 * | ( 5 ) 

Exerc i se 2 . 2 . 3 : Which of the grammars in Exercise 2.2.2 are ambiguous? 

Exerc i se 2 . 2 . 4 : Construct unambiguous context-free grammars for each of 
the following languages. In each case show tha t your grammar is correct. 

a) Arithmetic expressions in postfix notation. 

b) Left-associative lists of identifiers separated by commas. 

c) Right-associative lists of identifiers separated by commas. 

d) Arithmetic expressions of integers and identifiers with the four binary 
operators +, -, *, /. 
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! e) Add unary plus and minus to the arithmetic operators of (d). 

Exerc i se 2 . 2 . 5 : 

a) Show tha t all binary strings generated by the following grammar have 
values divisible by 3. Hint. Use induction on the number of nodes in a 
parse tree. 

num ->• 11 | 1001 | numO | num num 

b) Does the grammar generate all binary strings with values divisible by 3? 

Exerc i se 2 . 2 . 6 : Construct a context-free grammar for roman numerals. 

2.3 Syntax-Directed Translation 

Syntax-directed translation is done by attaching rules or program fragments to 
productions in a grammar. For example, consider an expression expr generated 
by the production 

expr -» exprx + term 

Here, expr is the sum of the two subexpressions exprx and term. (The subscript 
in exprx is used only to distinguish the instance of expr in the production body 
from the head of the production). We can translate expr by exploiting its 
structure, as in the following pseudo-code: 

translate exprx; 
t ranslate term; 
handle +; 

Using a variant of this pseudocode, we shall build a syntax tree for expr in 
Section 2.8 by building syntax trees for exprt and term and then handling + by 
constructing a node for it. For convenience, the example in this section is the 
translation of infix expressions into postfix notation. 

This section introduces two concepts related to syntax-directed translation: 

• Attributes. An attribute is any quantity associated with a programming 
construct. Examples of at tr ibutes are da ta types of expressions, the num
ber of instructions in the generated code, or the location of the first in
struction in the generated code for a construct, among many other pos
sibilities. Since we use grammar symbols (nonterminals and terminals) 
to represent programming constructs, we extend the notion of at t r ibutes 
from constructs to the symbols tha t represent them. 
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• (Syntax-directed) translation schemes. A translation scheme is a notation 
for at taching program fragments to the productions of a grammar. The 
program fragments are executed when the production is used during syn
tax analysis. The combined result of all these fragment executions, in 
the order induced by the syntax analysis, produces the translation of the 
program to which this analysis/synthesis process is applied. 

Syntax-directed translations will be used throughout this chapter to t rans
late infix expressions into postfix notation, to evaluate expressions, and to build 
syntax trees for programming constructs. A more detailed discussion of syntax-
directed formalisms appears in Chapter 5. 

2.3.1 Postfix Notation 

The examples in this section deal with translation into postfix notation. The 
postfix notation for an expression E can be defined inductively as follows: 

1. If E is a variable or constant, then the postfix notation for E is E itself. 

2. If E is an expression of the form E\ op E2, where op is any binary 
operator, then the postfix notation for E is E[ E'2 op, where E[ and E'2 

are the postfix notations for E\ and E2, respectively. 

3. If E is a parenthesized expression of the form (Ei), then the postfix 
notation for E is the same as the postfix notation for E\. 

E x a m p l e 2.8 : The postfix notation for (9 -5 )+2 is 95-2+. Tha t is, the t rans
lations of 9, 5, and 2 are the constants themselves, by rule (1). Then, the 
translation of 9-5 is 9 5 - by rule (2). The translation of ( 9 -5 ) is the same 
by rule (3). Having translated the parenthesized subexpression, we may apply 
rule (2) to the entire expression, with (9 -5 ) in the role of E\ and 2 in the role 
of E2: to get the result 95-2+. 

As another example, the postfix notation for 9- (5+2) is 952+-. Tha t is, 5+2 
is first t ranslated into 52+, and this expression becomes the second argument 
of the minus sign. • 

No parentheses are needed in postfix notation, because the position and 
arity (number of arguments) of the operators permits only one decoding of a 
postfix expression. The "trick" is to repeatedly scan the postfix string from the 
left, until you find an operator. Then, look to the left for the proper number 
of operands, and group this operator with its operands. Evaluate the operator 
on the operands, and replace them by the result. Then repeat the process, 
continuing to the right and searching for another operator. 

E x a m p l e 2 . 9 : Consider the postfix expression 952+-3*. Scanning from the 
left, we first encounter the plus sign. Looking to its left we find operands 5 and 
2. Their sum, 7, replaces 52+, and we have the string 97-3* . Now, the leftmost 
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operator is the minus sign, and its operands are 9 and 7. Replacing these by 
the result of the subtraction leaves 23*. Last, the multiplication sign applies to 
2 and 3, giving the result 6. • 

2.3.2 Synthesized Attributes 

The idea of associating quantities with programming constructs—for example, 
values and types with expressions—can be expressed in terms of grammars . We 
associate at tr ibutes with nonterminals and terminals. Then, we at tach rules to 
the productions of the grammar; these rules describe how the at tr ibutes are 
computed at those nodes of the parse tree where the production in question is 
used to relate a node to its children. 

A syntax-directed definition associates 

1. With each grammar symbol, a set of at t r ibutes, and 

2. With each production, a set of semantic rules for computing the values of 
the at tr ibutes associated with the symbols appearing in the production. 

Attributes can be evaluated as follows. For a given input string x, construct 
a parse tree for x. Then, apply the semantic rules to evaluate at t r ibutes at each 
node in the parse tree, as follows. 

Suppose a node A?" in a parse tree is labeled by the grammar symbol X. We 
write X.a to denote the value of a t t r ibute a of X at tha t node. A parse tree 
showing the a t t r ibute values at each node is called an annotated parse tree. For 
example, Fig. 2.9 shows an annotated parse tree for 9-5+2 with an a t t r ibute 
t associated with the nonterminals expr and term. The value 95-2+ of the 
a t t r ibute at the root is the postfix notation for 9-5+2. We shall see shortly how 
these expressions are computed. 

expr.t = 95-2+ 

expr.t = 95' + term.t = 2 

expr.t = 9 term.t = 5 2 

term.t = 9 5 

9 

Figure 2.9: Attr ibute values at nodes in a parse tree 

An at t r ibute is said to be synthesized if its value at a parse-tree node N is de
termined from at t r ibute values at the children of N and at N itself. Synthesized 
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at t r ibutes have the desirable property tha t they can be evaluated during a sin
gle bot tom-up traversal of a parse tree. In Section 5.1.1 we shall discuss another 
important kind of a t t r ibute: the "inherited" a t t r ibute . Informally, inherited at
tr ibutes have their value at a parse-tree node determined from at t r ibute values 
at the node itself, its parent, and its siblings in the parse tree. 

E x a m p l e 2 . 1 0 : The annotated parse tree in Fig. 2 . 9 is based on the syntax-
directed definition in Fig. 2 . 1 0 for translating expressions consisting of digits 
separated by plus or minus signs into postfix notation. Each nonterminal has a 
string-valued at t r ibute t tha t represents the postfix notation for the expression 
generated by tha t nonterminal in a parse tree. The symbol | | in the semantic 
rule is the operator for string concatenation. 

P R O D U C T I O N S E M A N T I C R U L E S 

expr —> exprx + term expr.t = exprx.t || term.t || '+' 

expr —> exprx - term expr.t = exprx.t || term.t || '-' 

expr -> term expr.t = term.t 

term -» 0 term.t = ' 0 ' 

term -> 1 term.t = ' 1 ' 

term —)• 9 term.t — ' 9 ' 

Figure 2 . 1 0 : Syntax-directed definition for infix to postfix translation 

The postfix form of a digit is the digit itself; e.g., the semantic rule associ
ated with the production term -» 9 defines term.t to be 9 itself whenever this 
production is used at a node in a parse tree. The other digits are translated 
similarly. As another example, when the production expr term is applied, 
the value of term.t becomes the value of expr.t. 

The production expr —> exprx + term derives an expression containing a plus 
operator . 3 The left operand of the plus operator is given by exprx and the right 
operand by term. The semantic rule 

expr.t = expr.t \\ term.t \\ '+' 

associated with this production constructs the value of a t t r ibute expr.t by con
catenating the postfix forms expr.t and term.t of the left and right operands, 
respectively, and then appending the plus sign. This rule is a formalization of 
the definition of "postfix expression." • 

3 I n this and many other rules, the same nonterminal (expr, here) appears several times. 
The purpose of the subscript 1 in exprx is to distinguish the two occurrences of expr in the 
production; the " 1 " is not part of the nonterminal. See the box on "Convention Distinguishing 
Uses of a Nonterminal" for more details. 
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Convention Distinguishing Uses of a Nonterminal 

In rules, we often have a need to distinguish among several uses of the 
same nonterminal in the head and /o r body of a production; e.g., see Ex
ample 2.10. The reason is tha t in the parse tree, different nodes labeled 
by the same nonterminal usually have different values for their transla
tions. We shall adopt the following convention: the nonterminal appears 
unsubscripted in the head and with distinct subscripts in the body. These 
are all occurrences of the same nonterminal, and the subscript is not par t 
of its name. However, the reader should be alert to the difference be
tween examples of specific translations, where this convention is used, and 
generic productions like A —> X1X2, • • • ,Xn, where the subscripted X ' s 
represent an arbitrary list of grammar symbols, and are not instances of 
one particular nonterminal called X. 

2.3.3 Simple Syntax-Directed Definitions 

The syntax-directed definition in Example 2.10 has the following important 
property: the string representing the translation of the nonterminal at the head 
of each production is the concatenation of the translations of the nonterminals 
in the production body, in the same order as in the production, with some 
optional additional strings interleaved. A syntax-directed definition with this 
property is termed simple. 

E x a m p l e 2 . 1 1 : Consider the first production and semantic rule from Fig. 2.10: 

Here the translation expr.t is the concatenation of the translations of exprx and 
term, followed by the symbol +. Notice tha t expr\ and term appear in the 
same order in both the production body and the semantic rule. There are no 
additional symbols before or between their translations. In this example, the 
only extra symbol occurs at the end. • 

When translation schemes are discussed, we shall see tha t a simple syntax-
directed definition can be implemented by printing only the additional strings, 
in the order they appear in the definition. 

2.3.4 Tree Traversals 
Tree traversals will be used for describing a t t r ibute evaluation and for specifying 
the execution of code fragments in a translation scheme. A traversal of a tree 
starts at the root and visits each node of the tree in some order. 

P R O D U C T I O N 

expr^r exprx + term expr.t 

S E M A N T I C R U L E 

= exprx.t || term.t || '+' 
(2.5) 
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A depth-first traversal s tarts at the root and recursively visits the children 
of each node in any order, not necessarily from left to right. It is called "depth-
first" because it visits an unvisited child of a node whenever it can, so it visits 
nodes as far away from the root (as "deep") as quickly as it can. 

The procedure visit(N) in Fig. 2.11 is a depth first traversal tha t visits the 
children of a node in left-to-right order, as shown in Fig. 2.12. In this traversal, 
we have included the action of evaluating translations at each node, just before 
we finish with the node ( that is, after translations at the children have surely 
been computed). In general, the actions associated with a traversal can be 
whatever we choose, or nothing at all. 

procedure visit (node N) { 
for ( each child C of N, from left to right ) { 

visit (C); 

} 
evaluate semantic rules at node N; 

} 

Figure 2.11: A depth-first traversal of a tree 

Figure 2.12: Example of a depth-first traversal of a tree 

A syntax-directed definition does not impose any specific order for the eval
uation of at t r ibutes on a parse tree; any evaluation order tha t computes an 
a t t r ibute a after all the other at tr ibutes tha t a depends on is acceptable. Syn
thesized at t r ibutes can be evaluated during any bottom-up traversal, tha t is, a 
traversal tha t evaluates at tr ibutes at a node after having evaluated at tr ibutes 
at its children. In general, with both synthesized and inherited at tr ibutes, the 
mat ter of evaluation order is quite complex; see Section 5.2. 

2.3.5 Translation Schemes 

The syntax-directed definition in Fig. 2.10 builds up a translation by attaching 
strings as at tr ibutes to the nodes in the parse tree. We now consider an alter
native approach tha t does not need to manipulate strings; it produces the same 
translation incrementally, by executing program fragments. 
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Preorder and Postorder Traversals 

Preorder and postorder traversals are two important special cases of depth-
first traversals in which we visit the children of each node from left to right. 

Often, we traverse a tree to perform some particular action at each 
node. If the action is done when we first visit a node, then we may refer 
to the traversal as a preorder traversal. Similarly, if the action is done 
just before we leave a node for the last time, then we say it is a postorder 
traversal of the tree. The procedure visit(N) in Fig. 2.11 is an example of 
a postorder traversal. 

Preorder and postorder traversals define corresponding orderings on 
nodes, based on when the action at a node would be performed. The 
preorder of a (sub)tree rooted at node JV consists of N, followed by the 
preorders of the subtrees of each of its children, if any, from the left. The 
postorder of a (sub)tree rooted at TV" consists of the postorders of each of 
the subtrees for the children of N, if any, from the left, followed by N 
itself. 

A syntax-directed translation scheme is a notation for specifying a transla
tion by attaching program fragments to productions in a grammar. A transla
tion scheme is like a syntax-directed definition, except tha t the order of evalu
ation of the semantic rules is explicitly specified. 

Program fragments embedded within production bodies are called semantic 
actions. The position at which an action is to be executed is shown by enclosing 
it between curly braces and writing it within the production body, as in 

rest —> + term {print( '+')} rest\ 

We shall see such rules when we consider an alternative form of grammar for 
expressions, where the nonterminal rest represents "everything but the first 
term of an expression." This form of grammar is discussed in Section 2.4.5. 
Again, the subscript in rest\ distinguishes this instance of nonterminal rest in 
the production body from the instance of rest at the head of the production. 

When drawing a parse tree for a translation scheme, we indicate an action 
by constructing an extra child for it, connected by a dashed line to the node 
tha t corresponds to the head of the production. For example, the portion of 
the parse tree for the above production and action is shown in Fig. 2.13. The 
node for a semantic action has no children, so the action is performed when 
tha t node is first seen. 

E x a m p l e 2 . 1 2 : The parse tree in Fig. 2.14 has print s tatements at extra 
leaves, which are attached by dashed lines to interior nodes of the parse tree. 
The translation scheme appears in Fig. 2.15. The underlying grammar gen
erates expressions consisting of digits separated by plus and minus signs. The 
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rest ^^^^^^^ 

+ term {print ('+')} resh 

Figure 2.13: An extra leaf is constructed for a semantic action 

actions embedded in the production bodies translate such expressions into post
fix notation, provided we perform a left-to-right depth-first traversal of the tree 
and execute each print statement when we visit its leaf. 

expr . 

term {print ('+')} 

/ \ , 
2 {print ('2')} 

Figure 2.14: Actions translating 9-5+2 into 95-2+ 

expr -¥ exprx + term {print( '+')} 
expr -> exprx - term {print ( ' - ' )} 
expr -¥ term 
term -t 0 {printCO')} 
term -» 1 { p r i n t ( T ) } 

term -> 9 {print( '9 ')} 

expr - term {print ( '- ')} 

term 5 {print ('5')} 

/ \ 
9 {print ('9')} 

Figure 2.15: Actions for translating into postfix notat ion 

The root of Fig. 2.14 represents the first production in Fig. 2.15. In a 
postorder traversal, we first perform all the actions in the leftmost subtree of 
the root, for the left operand, also labeled expr like the root. We then visit the 
leaf + at which there is no action. We next perform the actions in the subtree 
for the right operand term and, finally, the semantic action { print( '+') } at the 
extra node. 

Since the productions for term have only a digit on the right side, tha t digit 
is printed by the actions for the productions. No output is necessary for the 
production expr -> term, and only the operator needs to be printed in the 
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action for each of the first two productions. When executed during a postorder 
traversal of the parse tree, the actions in Fig. 2.14 print 95-2+. • 

Note tha t although the schemes in Fig. 2.10 and Fig. 2.15 produce the same 
translation, they construct it differently; Fig. 2.10 attaches strings as at tr ibutes 
to the nodes in the parse tree, while the scheme in Fig. 2.15 prints the translation 
incrementally, through semantic actions. 

The semantic actions in the parse tree in Fig. 2.14 translate the infix ex
pression 9-5+2 into 95-2+ by printing each character in 9-5+2 exactly once, 
without using any storage for the translation of subexpressions. When the out
put is created incrementally in this fashion, the order in which the characters 
are printed is significant. 

The implementation of a translation scheme must ensure tha t semantic ac
tions are performed in the order they would appear during a postorder traversal 
of a parse tree. The implementation need not actually construct a parse tree 
(often it does not) , as long as it ensures tha t the semantic actions are per
formed as if we constructed a parse tree and then executed the actions during 
a postorder traversal. 

2.3.6 Exercises for Section 2.3 

Exerc i se 2 . 3 . 1 : Construct a syntax-directed translation scheme tha t t rans
lates arithmetic expressions from infix notation into prefix notation in which an 
operator appears before its operands; e.g., —xy is the prefix notation for x — y. 
Give annotated parse trees for the inputs 9-5+2 and 9-5*2. 

Exerc i se 2 . 3 . 2 : Construct a syntax-directed translation scheme tha t t rans
lates arithmetic expressions from postfix notation into infix notation. Give 
annotated parse trees for the inputs 95 -2* and 952*- . 

Exerc i se 2 . 3 . 3 : Construct a syntax-directed translation scheme tha t t rans

lates integers into roman numerals. 

Exerc i se 2 . 3 . 4 : Construct a syntax-directed translation scheme tha t t rans

lates roman numerals into integers. 

Exerc i se 2 . 3 . 5 : Construct a syntax-directed translation scheme tha t t rans
lates postfix arithmetic expressions into equivalent infix arithmetic expressions. 

2.4 Parsing 
Parsing is the process of determining how a string of terminals can be generated 
by a grammar. In discussing this problem, it is helpful to think of a parse tree 
being constructed, even though a compiler may not construct one, in practice. 
However, a parser must be capable of constructing the tree in principle, or else 
the translation cannot be guaranteed correct. 



2.4. PARSING 61 

This section introduces a parsing method called "recursive descent," which 
can be used both to parse and to implement syntax-directed translators. A com
plete Java program, implementing the translation scheme of Fig. 2.15, appears 
in the next section. A viable alternative is to use a software tool to generate 
a translator directly from a translation scheme. Section 4.9 describes such a 
tool — Yacc; it can implement the translation scheme of Fig. 2.15 without 
modification. 

For any context-free grammar there is a parser tha t takes at most 0 ( n 3 ) 
t ime to parse a string of n terminals. But cubic t ime is generally too expen
sive. Fortunately, for real programming languages, we can generally design a 
grammar tha t can be parsed quickly. Linear-time algorithms suffice to parse 
essentially all languages tha t arise in practice. Programming-language parsers 
almost always make a single left-to-right scan over the input, looking ahead one 
terminal at a time, and constructing pieces of the parse tree as they go. 

Most parsing methods fall into one of two classes, called the top-down and 
bottom-up methods. These terms refer to the order in which nodes in the parse 
tree are constructed. In top-down parsers, construction starts at the root and 
proceeds towards the leaves, while in bot tom-up parsers, construction starts at 
the leaves and proceeds towards the root. The popularity of top-down parsers 
is due to the fact tha t efficient parsers can be constructed more easily by hand 
using top-down methods. Bot tom-up parsing, however, can handle a larger class 
of grammars and translation schemes, so software tools for generating parsers 
directly from grammars often use bot tom-up methods. 

2.4.1 Top-Down Parsing 

We introduce top-down parsing by considering a grammar tha t is well-suited 
for this class of methods. Later in this section, we consider the construction 
of top-down parsers in general. The grammar in Fig. 2.16 generates a subset 
of the statements of C or Java. We use the boldface terminals if and for for 
the keywords "if" and " for" , respectively, to emphasize tha t these character 
sequences are t reated as units, i.e., as single terminal symbols. Further, the 
terminal expr represents expressions; a more complete grammar would use a 
nonterminal expr and have productions for nonterminal expr. Similarly, o ther 
is a terminal representing other statement constructs. 

The top-down construction of a parse tree like the one in Fig. 2.17, is done 
by start ing with the root, labeled with the start ing nonterminal stmt, and re
peatedly performing the following two steps. 

1. At node JV, labeled with nonterminal A, select one of the productions for 
A and construct children at N for the symbols in the production body. 

2. Find the next node at which a subtree is to be constructed, typically the 
leftmost unexpanded nonterminal of the tree. 

For some grammars, the above steps can be implemented during a single 
left-to-right scan of the input string. The current terminal being scanned in the 
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stmt —y expr ; 
if ( expr ) stmt 

for ( optexpr ; optexpr ; optexpr ) stmt 
other 

optexpr —> e 
expr 

Figure 2.16: A grammar for some statements in C and Java 

stmt 

for stmt 

e expr expr other 

Figure 2.17: A parse tree according to the grammar in Fig. 2.16 

input is frequently referred to as the lookahead symbol. Initially, the lookahead 
symbol is the first, i.e., leftmost, terminal of the input string. Figure 2.18 
illustrates the construction of the parse tree in Fig. 2.17 for the input string 

Initially, the terminal for is the lookahead symbol, and the known par t of the 
parse tree consists of the root, labeled with the start ing nonterminal stmt in 
Fig. 2.18(a). The objective is to construct the remainder of the parse tree in 
such a way tha t the string generated by the parse tree matches the input string. 

For a match to occur, the nonterminal stmt in Fig. 2.18(a) must derive a 
string tha t s tarts with the lookahead symbol for. In the grammar of Fig. 2.16, 
there is just one production for stmt that can derive such a string, so we select it, 
and construct the children of the root labeled with the symbols in the production 
body. This expansion of the parse tree is shown in Fig. 2.18(b). 

Each of the three snapshots in Fig. 2.18 has arrows marking the lookahead 
symbol in the input and the node in the parse tree tha t is being considered. 
Once children are constructed at a node, we next consider the leftmost child. In 
Fig. 2.18(b), children have just been constructed at the root, and the leftmost 
child labeled with for is being considered. 

When the node being considered in the parse tree is for a terminal, and 
the terminal matches the lookahead symbol, then we advance in both the parse 
tree and the input. The next terminal in the input becomes the new lookahead 
symbol, and the next child in the parse tree is considered. In Fig. 2.18(c), the 
arrow in the parse tree has advanced to the next child of the root, and the arrow 

for ( ; expr ; expr ) o ther 
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PARSE stmt 

TREE 

(a) — 
INPUT f o r ( ; e x p r ; e x p r ) o t h e r 

Figure 2.18: Top-down parsing while scanning the input from left to right 

in the input has advanced to the next terminal, which is (. A further advance 
will take the arrow in the parse tree to the child labeled with nonterminal 
optexpr and take the arrow in the input to the terminal ;. 

At the nonterminal node labeled optexpr, we repeat the process of selecting a 
production for a nonterminal. Productions with e as the body ("e-productions") 
require special t reatment . For the moment, we use them as a default when 
no other production can be used; we return to them in Section 2.4.3. Wi th 
nonterminal optexpr and lookahead ;, the e-production is used, since ; does 
not match the only other production for optexpr, which has terminal expr as 
its body. 

In general, the selection of a production for a nonterminal may involve trial-
and-error; tha t is, we may have to t ry a production and backtrack to t ry another 
production if the first is found to be unsuitable. A production is unsuitable 
if, after using the production, we cannot complete the tree to match the input 
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string. Backtracking is not needed, however, in an important special case called 
predictive parsing, which we discuss next. 

2.4.2 Predictive Parsing 

Recursive-descent parsing is a top-down method of syntax analysis in which 
a set of recursive procedures is used to process the input. One procedure is 
associated with each nonterminal of a grammar. Here, we consider a simple form 
of recursive-descent parsing, called predictive parsing, in which the lookahead 
symbol unambiguously determines the flow of control through the procedure 
body for each nonterminal. The sequence of procedure calls during the analysis 
of an input string implicitly defines a parse tree for the input, and can be used 
to build an explicit parse tree, if desired. 

The predictive parser in Fig. 2 . 1 9 consists of procedures for the nontermi
nals stmt and optexpr of the grammar in Fig. 2 . 1 6 and an additional procedure 
match, used to simplify the code for stmt and optexpr. Procedure match(t) com
pares its argument t with the lookahead symbol and advances to the next input 
terminal if they match. Thus match changes the value of variable lookahead, a 
global variable tha t holds the currently scanned input terminal. 

Parsing begins with a call of the procedure for the start ing nonterminal stmt. 
With the same input as in Fig. 2 . 1 8 , lookahead is initially the first terminal for. 
Procedure stmt executes code corresponding to the production 

stmt ->• for ( optexpr ; optexpr ; optexpr ) stmt 

In the code for the production body — tha t is, the for case of procedure stmt — 
each terminal is matched with the lookahead symbol, and each nonterminal 
leads to a call of its procedure, in the following sequence of calls: 

match(for); matched); 
optexprQ; match(';'); optexprQ; match(';'); optexprQ; 
match(')'); stmtQ; 

Predictive parsing relies on information about the first symbols tha t can be 
generated by a production body. More precisely, let a be a string of grammar 
symbols (terrninals and /o r nonterminals). We define F I R S T ( a ) to be the set of 
terminals tha t appear as the first symbols of one or more strings of terminals 
generated from a. If a is e or can generate e, then e is also in F I R S T (a). 

The details of how one computes FIRST (o ; ) are in Section 4 . 4 . 2 . Here, we 
shall just use ad hoc reasoning to deduce the symbols in F I R S T (a) ; typically, a 
will either begin with a terminal, which is therefore the only symbol in F I R S T ( Q ; ) , 

or a will begin with a nonterminal whose production bodies begin with termi
nals, in which case these terminals are the only members of F I R S T ( a ) . 

For example, with respect to the grammar of Fig. 2 . 1 6 , the following are 
correct calculations of F I R S T . 
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void stmt() { 
switch ( lookahead ) { 
case expr: 

match(expr); match(';'); break; 
case if: 

match(it); match(' ('); match (expr); match(')'); stmtQ; 
break; 

case for: 
match(for); match(' ('); 
optexprQ; match(';'); optexpr(); match(';'); optexprQ; 
match(')'); stmtQ; break; 

case other; 
match (other); break; 

default: 
report ( " syn tax e r r o r " ) ; 

} 
} 

void optexpr() { 
if ( lookahead == expr ) match(expr); 

} 

void match (terminal £) { 
if ( lookahead == £ ) lookahead — next Terminal; 
else report ( " syn tax e r r o r " ) ; 

} 

Figure 2.19: Pseudocode for a predictive parser 

FIRST(stmt) = {expr, if, for, o t h e r } 
FIRST(expr ;) = { e x p r } 

The FIRST sets must be considered if there are two productions A -» a and 
A —> 0. Ignoring e-productions for the moment, predictive parsing requires 
FlRST(a) and FIRST(/3) to be disjoint. The lookahead symbol can then be used 
to decide which production to use; if the lookahead symbol is in F I R S T ( O J ) , then 
a is used. Otherwise, if the lookahead symbol is in FIRST(/3), then 0 is used. 

2.4.3 When to Use e-Productions 

Our predictive parser uses an e-production as a default when no other produc
tion can be used. With the input of Fig. 2.18, after the terminals for and ( are 
matched, the lookahead symbol is ;. At this point procedure optexpr is called, 
and the code 
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if ( lookahead === expr ) match (expr); 

in its body is executed. Nonterminal optexpr has two productions, with bodies 
expr and e. The lookahead symbol " ; " does not match the terminal expr , so 
the production with body expr cannot apply. In fact, the procedure returns 
without changing the lookahead symbol or doing anything else. Doing nothing 
corresponds to applying an e-production. 

More generally, consider a variant of the productions in Fig. 2.16 where 
optexpr generates an expression nonterminal instead of the terminal expr: 

optexpr —>• expr 

I e 

Thus, optexpr either generates an expression using nonterminal expr or it gen
erates e. While parsing optexpr, if the lookahead symbol is not in FIRST (espr), 
then the e-production is used. 

For more on when to use e-productions, see the discussion of LL(1) grammars 
in Section 4.4.3. 

2.4.4 Designing a Predictive Parser 

We can generalize the technique introduced informally in Section 2.4.2, to apply 
to any grammar tha t has disjoint FIRST sets for the production bodies belonging 
to any nonterminal. We shall also see tha t when we have a translation scheme — 
tha t is, a grammar with embedded actions — it is possible to execute those 
actions as par t of the procedures designed for the parser. 

Recall tha t a predictive parser is a program consisting of a procedure for 
every nonterminal. The procedure for nonterminal A does two things. 

1. It decides which A-production to use by examining the lookahead symbol. 
The production with body a (where a is not e, the empty string) is used 
if the lookahead symbol is in F i R S T ( a ) . If there is a conflict between 
two nonempty bodies for any lookahead symbol, then we cannot use this 
parsing method on this grammar. In addition, the e-production for A, if 
it exists, is used if the lookahead symbol is not in the FIRST set for any 
other production body for A. 

2. The procedure then mimics the body of the chosen production. Tha t 
is, the symbols of the body are "executed" in turn , from the left. A 
nonterminal is "executed" by a call to the procedure for tha t nonterminal, 
and a terminal matching the lookahead symbol is "executed" by reading 
the next input symbol. If at some point the terminal in the body does 
not match the lookahead symbol, a syntax error is reported. 

Figure 2.19 is the result of applying these rules to the grammar in Fig. 2.16. 
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Just as a translation scheme is formed by extending a grammar, a syntax-
directed translator can be formed by extending a predictive parser. An algo
r i thm for this purpose is given in Section 5.4. The following limited construction 
suffices for the present: 

1. Construct a predictive parser, ignoring the actions in productions. 

2. Copy the actions from the translation scheme into the parser. If an action 
appears after grammar symbol X in production p, then it is copied after 
the implementation of X in the code for p. Otherwise, if it appears at the 
beginning of the production, then it is copied just before the code for the 
production body. 

We shall construct such a translator in Section 2.5. 

2.4.5 Left Recursion 
It is possible for a recursive-descent parser to loop forever. A problem arises 
with "left-recursive" productions like 

expr —y expr + term 

where the leftmost symbol of the body is the same as the nonterminal at the 
head of the production. Suppose the procedure for expr decides to apply this 
production. The body begins with expr so the procedure for expr is called 
recursively. Since the lookahead symbol changes only when a terminal in the 
body is matched, no change to the input took place between recursive calls of 
expr. As a result, the second call to expr does exactly what the first call did, 
which means a third call to expr, and so on, forever. 

A left-recursive production can be eliminated by rewriting the offending 
production. Consider a nonterminal A with two productions 

A ->• Aa | /3 

where a and /3 are sequences of terminals and nonterminals tha t do not start 
with A. For example, in 

expr —y expr + term \ term 

nonterminal A — expr, string a = + term, and string (3 = term. 
The nonterminal A and its production are said to be left recursive, because 

the production A -> Aa has A itself as the leftmost symbol on the right side. 4 

Repeated application of this production builds up a sequence of a ' s to the right 
of A, as in Fig. 2.20(a). When A is finally replaced by /3, we have a /3 followed 
by a sequence of zero or more a ' s . 

The same effect can be achieved, as in Fig. 2.20(b), by rewriting the pro
ductions for A in the following manner, using a new nonterminal R: 

4 In a general left-recursive grammar, instead of a production A A a , the nonterminal A 
may derive Aa through intermediate productions. 
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A 

(a) 

A R 

R (b) 

A 

A 

A R 

R 

a a a (3 a a a 

Figure 2.20: Left- and right-recursive ways of generating a string 

A -> /3R 
R ->• aR | e 

Nonterminal R and its production R -» aR are recursive because this pro
duction for R has R itself as the last symbol on the right side. Right-recursive 
productions lead to trees tha t grow down towards the right, as in Fig. 2.20(b). 
Trees growing down to the right make it harder to translate expressions con
taining left-associative operators, such as minus. In Section 2.5.2, however, we 
shall see tha t the proper translation of expressions into postfix notation can 
still be at tained by a careful design of the translation scheme. 

In Section 4.3.3, we shall consider more general forms of left recursion and 
show how all left recursion can be eliminated from a grammar. 

2.4.6 Exercises for Section 2.4 

E x e r c i s e 2 . 4 . 1 : Construct recursive-descent parsers, start ing with the follow

ing grammars: 

a) S -> + SS | -SS | a 

b) S -> 5 ( 5 ) 5 | e 

c) S 0 5 1 | 0 1 

2.5 A Translator for Simple Expressions 
Using the techniques of the last three sections, we now construct a syntax-
directed translator, in the form of a working Java program, tha t translates 
arithmetic expressions into postfix form. To keep the initial program manage
ably small, we start with expressions consisting of digits separated by binary 
plus and minus signs. We extend the program in Section 2.6 to t ranslate ex
pressions tha t include numbers and other operators. It is worth studying the 
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translation of expressions in detail, since they appear as a construct in so many 

languages. 
A syntax-directed translation scheme often serves as the specification for 

a translator . The scheme in Fig. 2.21 (repeated from Fig. 2.15) defines the 
translation to be performed here. 

expr -> expr + term { print( '+ / ) } 
| expr - term { p r in t ( ' - ' ) } 
| term 

term -» 0 { print('O') } 
| 1 { p r in t ( ' l ' ) } 

| 9 { print('9') } 

Figure 2.21: Actions for translating into postfix notation 

Often, the underlying grammar of a given scheme has to be modified before 
it can be parsed with a predictive parser. In particular, the grammar underlying 
the scheme in Fig. 2.21 is left recursive, and as we saw in the last section, a 
predictive parser cannot handle a left-recursive grammar. 

We appear to have a conflict: on the one hand we need a grammar tha t 
facilitates translation, on the other hand we need a significantly different gram
mar tha t facilitates parsing. The solution is to begin with the grammar for 
easy translation and carefully transform it to facilitate parsing. By eliminating 
the left recursion in Fig. 2.21, we can obtain a grammar suitable for use in a 
predictive recursive-descent translator. 

2.5.1 Abstract and Concrete Syntax 

A useful start ing point for designing a translator is a da ta structure called 
an abstract syntax tree. In an abstract syntax tree for an expression, each 
interior node represents an operator; the children of the node represent the 
operands of the operator. More generally, any programming construct can be 
handled by making up an operator for the construct and treating as operands 
the semantically meaningful components of tha t construct. 

In the abstract syntax tree for 9 - 5 + 2 in Fig. 2.22, the root represents the 
operator +. The subtrees of the root represent the subexpressions 9 - 5 and 
2. The grouping of 9 - 5 as an operand reflects the left-to-right evaluation of 
operators at the same precedence level. Since - and + have the same precedence, 
9 - 5 + 2 is equivalent to ( 9 - 5 ) + 2 . 

Abstract syntax trees, or simply syntax trees, resemble parse trees to an 
extent. However, in the syntax tree, interior nodes represent programming 
constructs while in the parse tree, the interior nodes represent nonterminals. 
Many nonterminals of a grammar represent programming constructs, but others 
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+ 

\ 
2 

9 5 

Figure 2.22: Syntax tree for 9-5+2 

are "helpers" of one sort of another, such as those representing terms, factors, 
or other variations of expressions. In the syntax tree, these helpers typically are 
not needed and are hence dropped. To emphasize the contrast, a parse tree is 
sometimes called a concrete syntax tree, and the underlying grammar is called 
a concrete syntax for the language. 

In the syntax tree in Fig. 2.22, each interior node is associated with an 
operator, with no "helper" nodes for single productions (a production whose 
body consists of a single nonterminal, and nothing else) like expr —»• term or for 
e-productions like rest -> e. 

It is desirable for a translation scheme to be based on a grammar whose parse 
trees are as close to syntax trees as possible. The grouping of subexpressions 
by the grammar in Fig. 2.21 is similar to their grouping in syntax trees. For 
example, subexpressions of the addition operator are given by expr and term in 
the production body expr+ term. 

2.5.2 Adapting the Translation Scheme 

The left-recursion-elimination technique sketched in Fig. 2.20 can also be ap
plied to productions containing semantic actions. First, the technique extends 
to multiple productions for A. In our example, A is expr, and there are two left-
recursive productions for expr and one tha t is not left recursive. The technique 
transforms the productions A ->• Aa | A/3 | 7 into 

Second, we need to transform productions tha t have embedded actions, not 
just terminals and nonterminals. Semantic actions embedded in the productions 
are simply carried along in the transformation, as if they were terminals. 

E x a m p l e 2 . 1 3 : Consider the translation scheme of Fig. 2.21. Let 

A -»• 7.R 
R aR\/3R\e 

A expr 
+ term { print( '+') } 
- term { p r in t ( ' - ' ) } 
term 

a 

1 
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Then the left-recursion-eliminating transformation produces the translation 
scheme in Fig. 2.23. The expr productions in Fig. 2.21 have been transformed 
into the productions for expr, and a new nonterminal rest plays the role of R. 

The productions for term are repeated from Fig. 2.21. Figure 2.24 shows how 
9-5+2 is t ranslated using the grammar in Fig. 2.23. • 

expr —y term rest 

rest —y + term { print( '+ / ) } rest 

| - term { pr in t ( ' - ' ) } rest 

I c 

term -» 0 { print ('0') } 

| 1 { print( '1 ') } 

| 9 { print('9') } 

Figure 2.23: Translation scheme after left-recursion elimination 

Figure 2.24: Translation of 9-5+2 to 95-2+ 

Left-recursion elimination must be done carefully, to ensure tha t we preserve 
the ordering of semantic actions. For example, the transformed scheme in 
Fig. 2.23 has the actions { print ('+') } and { pr in t ( ' - ' ) } in the middle of 
a production body, in each case between nonterminals term and rest. If the 
actions were to be moved to the end, after rest, then the translations would 
become incorrect. We leave it to the reader to show tha t 9-5+2 would then be 
translated incorrectly into 952+-, the postfix notat ion for 9-(5+2), instead of 
the desired 95-2+, the postfix notation for (9-5)+2. 
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2.5.3 Procedures for the Nonterminals 

Functions expr, rest, and term in Fig. 2.25 implement the syntax-directed trans
lation scheme in Fig. 2.23. These functions mimic the production bodies of 
the corresponding nonterminals. Function expr implements the production 
expr-\ term rest by the calls termQ followed by restQ. 

void exprQ { 

termi); restQ; 

} 

void restQ { 
if ( lookahead == '+' ) { 

match('+'); termQ; print( '+ ') ; restQ; 

} 
else if ( lookahead == '-' ) { 

match('-'); termQ; p r in t ( ' - ' ) ; restQ; 

} 
e lse { } /* do nothing with the input */ ; 

} 

vo id termQ { 
if ( lookahead is a digit ) { 

t = lookahead; match(lookahead); print(t); 

} 
else report (" syntax error"); 

} 

Figure 2.25: Pseudocode for nonterminals expr, rest, and term. 

Function rest implements the three productions for nonterminal rest in 
Fig. 2.23. It applies the first production if the lookahead symbol is a plus 
sign, the second production if the lookahead symbol is a minus sign, and the 
production rest e in all other cases. The first two productions for rest are 
implemented by the first two branches of the if-statement in procedure rest. 
If the lookahead symbol is +, the plus sign is matched by the call match('+'). 
After the call termQ, the semantic action is implemented by writing a plus 
character. The second production is similar, with - instead of +. Since the 
third production for rest has e as its right side, the last else-clause in function 
rest does nothing. 

The ten productions for term generate the ten digits. Since each of these 
productions generates a digit and prints it, the same code in Fig. 2.25 imple
ments them all. If the test succeeds, variable t saves the digit represented by 
lookahead so it can be written after the call to match. Note tha t match changes 
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the lookahead symbol, so the digit needs to be saved for later pr int ing. 5 

2.5.4 Simplifying the Translator 

Before showing a complete program, we shall make two simplifying transfor
mations to the code in Fig. 2.25. The simplifications will fold procedure rest 
into procedure expr. When expressions with multiple levels of precedence are 
translated, such simplifications reduce the number of procedures needed. 

First, certain recursive calls can be replaced by iterations. When the last 
statement executed in a procedure body is a recursive call to the same proce
dure, the call is said to be tail recursive. For example, in function rest, the 
calls of rest() with lookahead + and - are tail recursive because in each of these 
branches, the recursive call to rest is the last statement executed by the given 
call of rest. 

For a procedure without parameters, a tail-recursive call can be replaced 
simply by a jump to the beginning of the procedure. The code for rest can be 
rewritten as the pseudocode of Fig. 2.26. As long as the lookahead symbol is 
a plus or a minus sign, procedure rest matches the sign, calls term to match 
a digit, and continues the process. Otherwise, it breaks out of while loop and 
returns from rest. 

void restQ { 
while( t rue ) { 

if( lookahead == '+' ) { 
match('+'); termQ; print( '+ ') ; cont inue; 

} 
else if ( lookahead —= '-' ) { 

match('-'); termQ; p r in t ( ' - ' ) ; cont inue; 

} 
break ; 

} 
} 

Figure 2.26: Eliminating tail recursion in the procedure rest of Fig. 2.25. 

Second, the complete Java program will include one more change. Once 
the tail-recursive calls to rest in Fig. 2.25 are replaced by iterations, the only 
remaining call to rest is from within procedure expr. The two procedures can 
therefore be integrated into one, by replacing the call restQ by the body of 
procedure rest. 

5 As a minor optimization, we could print before calling match to avoid the need to save 
the digit. In general, changing the order of actions and grammar symbols is risky, since it 
could change what the translation does. 
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2.5.5 The Complete Program 

The complete Java program for our translator appears in Fig. 2.27. The first 
line of Fig. 2.27, beginning with import, provides access to the package j ava. io 
for system input and output . The rest of the code consists of the two classes 
Parser and Postfix. Class Parser contains variable lookahead and functions 
Parser, expr, term, and match. 

Execution begins with function main, which is defined in class Postfix. 
Function main creates an instance parse of class Parser and calls its function 
expr to parse an expression. 

The function Parser, with the same name as its class, is a constructor, 
it is called automatically when an object of the class is created. Notice from 
its definition at the beginning of class Parser tha t the constructor Parser 
initializes variable lookahead by reading a token. Tokens, consisting of single 
characters, are supplied by the system input routine read, which reads the next 
character from the input file. Note tha t lookahead is declared to be an integer, 
rather than a character, to anticipate the fact tha t additional tokens other than 
single characters will be introduced in later sections. 

Function expr is the result of the simplifications discussed in Section 2.5.4; 
it implements nonterminals expr and rest in Fig. 2.23. The code for expir 
in Fig. 2.27 calls term and then has a while-loop tha t forever tests whether 
lookahead matches either ' + ' or ' - ' . Control exits from this while-loop when 
it reaches the return statement. Within the loop, the inpu t /ou tpu t facilities of 
the System class are used to write a character. 

Function term uses the routine isDigit from the Java class Character 
to test if the lookahead symbol is a digit. The routine isDigit expects to 
be applied to a character; however, lookahead is declared to be an integer, 
anticipating future extensions. The construction (char) lookahead casts or 
coerces lookahead to be a character. In a small change from Fig. 2.25, the 
semantic action of writing the lookahead character occurs before the call to 
match. 

The function match checks terminals; it reads the next input terminal if the 
lookahead symbol is matched and signals an error otherwise by executing 

throw new Error("syntax error"); 

This code creates a new exception of class E r r o r and supplies it the string 
syntax error as an error message. Java does not require E r r o r exceptions 
to be declared in a throws clause, since they are meant to be used only for 
abnormal events tha t should never occur. 6 

6 Error handling can be streamlined using the exception-handling facilities of Java. One ap
proach is to define a new exception, say SyntaxError, that extends the system class Exception. 
Then, throw SyntaxError instead of Error when an error is detected in either term or match. 
Further, handle the exception in main by enclosing the call parse.expr() within a try state
ment that catches exception SyntaxError, writes a message, and terminates. We would need 
to add a class SyntaxError to the program in Fig. 2.27. To complete the extension, in addition 
to IOException, functions match and term must now declare that they can throw SyntaxError. 
Function expr, which calls them, must also declare that it can throw SyntaxError. 
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import java.io.*; 

class Parser { 

static int lookahead; 

public Parser() throws IOException { 

lookahead = System.in.read(); 

} 

void expr() throws IOException { 

term(); 

while(true) { 

if( lookahead == ) { 

match('+'); termO ; System, out .write (' + ' ) ; 

} 
else if( lookahead == '-' ) { 

match('-'); term(); System.out.write('-'); 

} 

else return; 

} 

} 

void term() throws IOException { 

if( Character.isDigit((char)lookahead) ) { 

System.out.write((char)lookahead); match(lookahead); 

} 
else throw new Error("syntax error"); 

} 

void match(int t) throws IOException { 

if( lookahead == t ) lookahead = System.in.read(); 

else throw new Error("syntax error"); 

} 
> 

public class Postfix { 

public static void main(String[] args) throws IOException { 

Parser parse = new ParserO; 

parse.expr(); System.out.write('\n'); 

> 
} 

Figure 2.27: Java program to translate infix expressions into postfix form 
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A Few Salient Features of Java 

Those unfamiliar with Java may find the following notes on Java helpful 
in reading the code in Fig. 2.27: 

• A class in Java consists of a sequence of variable and function defi
nitions. 

• Parentheses enclosing function parameter lists are needed even if 
there are no parameters; hence we write expr() and term(). These 
functions are actually procedures, because they do not return values, 
signified by the keyword void before the function name. 

• Functions communicate either by passing parameters "by value" 
or by accessing shared data. For example, the functions expr() 
and term() examine the lookahead symbol using the class variable 
lookahead tha t they can all access since they all belong to the same 
class Parser. 

• Like C, Java uses = for assignment, == for equality, and != for in
equality. 

• The clause "throws IOException" in the definition of term() de

clares tha t an exception called IOException can occur. Such an 
exception occurs if there is no input to be read when the function 
match uses the routine read. Any function tha t calls match must also 
declare tha t an IOException can occur during its own execution. 

2.6 Lexical Analysis 

A lexical analyzer reads characters from the input and groups them into "token 
objects." Along with a terminal symbol tha t is used for parsing decisions, 
a token object carries additional information in the form of a t t r ibute values. 
So far, there has been no need to distinguish between the terms "token" and 
"terminal," since the parser ignores the a t t r ibute values tha t are carried by a 
token. In this section, a token is a terminal along with additional information. 

A sequence of input characters t ha t comprises a single token is called a 
lexeme. Thus, we can say tha t the lexical analyzer insulates a parser from the 
lexeme representation of tokens. 

The lexical analyzer in this section allows numbers, identifiers, and "white 
space" (blanks, tabs , and newlines) to appear within expressions. It can be used 
to extend the expression translator of the previous section. Since the expression 
grammar of Fig. 2.21 must be extended to allow numbers and identifiers, we 
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shall take this opportunity to allow multiplication and division as well. The 

extended translation scheme appears in Fig. 2.28. 

expr -» expr + term { print ('+') } 
| expr - term { print ( '- ') } 
| term 

term -»• term * factor { print( '* ') } 

| term I factor { p r in t ( ' / ' ) } 
| factor 

factor -» ( expr) 
| n u m { print (num. value) } 
| id { print (id .lexeme) } 

Figure 2.28: Actions for translating into postfix notation 

In Fig. 2.28, the terminal n u m is assumed to have an a t t r ibute imm.value, 
which gives the integer value corresponding to this occurrence of n u m . Termi
nal id has a string-valued at t r ibute written as id.lexeme; we assume this string 
is the actual lexeme comprising this instance of the token id. 

The pseudocode fragments used to illustrate the workings of a lexical ana
lyzer will be assembled into Java code at the end of this section. The approach 
in this section is suitable for hand-written lexical analyzers. Section 3.5 de
scribes a tool called Lex tha t generates a lexical analyzer from a specification. 
Symbol tables or da ta structures for holding information about identifiers are 
considered in Section 2.7. 

2.6.1 Removal of White Space and Comments 

The expression translator in Section 2.5 sees every character in the input, so 
extraneous characters, such as blanks, will cause it to fail. Most languages 
allow arbitrary amounts of white space to appear between tokens. Comments 
are likewise ignored during parsing, so they may also be treated as white space. 

If white space is eliminated by the lexical analyzer, the parser will never 
have to consider it. The alternative of modifying the grammar to incorporate 
white space into the syntax is not nearly as easy to implement. 

The pseudocode in Fig. 2.29 skips white space by reading input characters 
as long as it sees a blank, a t ab , or a newline. Variable peek holds the next 
input character. Line numbers and context are useful within error messages to 
help pinpoint errors; the code uses variable line to count newline characters in 
the input. 



78 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR 

for ( ; ; peek = next input character ) { 
if ( peek is a blank or a t ab ) do nothing; 
else if ( peek is a newline ) line = line+1; 
else break; 

} 

Figure 2.29: Skipping white space 

2.6.2 Reading Ahead 

A lexical analyzer may need to read ahead some characters before it can decide 
on the token to be returned to the parser. For example, a lexical analyzer for 
C or Java must read ahead after it sees the character >. If the next character 
is =, then > is par t of the character sequence >=, the lexeme for the token for 
the "greater than or equal to" operator. Otherwise > itself forms the "greater 
than" operator, and the lexical analyzer has read one character too many. 

A general approach to reading ahead on the input, is to maintain an input 
buffer from which the lexical analyzer can read and push back characters. Input 
buffers can be justified on efficiency grounds alone, since fetching a block of 
characters is usually more efficient than fetching one character at a time. A 
pointer keeps track of the portion of the input tha t has been analyzed; pushing 
back a character is implemented by moving back the pointer. Techniques for 
input buffering are discussed in Section 3.2. 

One-character read-ahead usually suffices, so a simple solution is to use a 
variable, say peek, to hold the next input character. The lexical analyzer in 
this section reads ahead one character while it collects digits for numbers or 
characters for identifiers; e.g., it reads past 1 to distinguish between 1 and 10, 
and it reads past t to distinguish between t and t rue . 

The lexical analyzer reads ahead only when it must. An operator like * can 
be identified without reading ahead. In such cases, peek is set to a blank, which 
will be skipped when the lexical analyzer is called to find the next token. The 
invariant assertion in this section is tha t when the lexical analyzer returns a 
token, variable peek either holds the character beyond the lexeme for the current 
token, or it holds a blank. 

2.6.3 Constants 

Anytime a single digit appears in a grammar for expressions, it seems reasonable 
to allow an arbitrary integer constant in its place. Integer constants can be 
allowed either by creating a terminal symbol, say n u m , for such constants or 
by incorporating the syntax of integer constants into the grammar. The job 
of collecting characters into integers and computing their collective numerical 
value is generally given to a lexical analyzer, so numbers can be t reated as single 
units during parsing and translation. 
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When a sequence of digits appears in the input stream, the lexical analyzer 
passes to the parser a token consisting of the terminal n u m along with an 
integer-valued a t t r ibute computed from the digits. If we write tokens as tuples 
enclosed between ( ), the input 31 + 28 + 59 is transformed into the sequence 

(num, 31) (+) (num, 28) (+) (num, 59) 

Here, the terminal symbol + has no at tr ibutes, so its tuple is simply (+). The 
pseudocode in Fig. 2.30 reads the digits in an integer and accumulates the value 
of the integer using variable v. 

if ( peek holds a digit ) { 
v = 0; 
do { 

v = v * 10 + integer value of digit peek; 
peek = next input character; 

} whi l e ( peek holds a digit ); 
re turn token (num, v); 

} 

Figure 2.30: Grouping digits into integers 

2.6.4 Recognizing Keywords and Identifiers 

Most languages use fixed character strings such as for , do, and i f , as punctua
tion marks or to identify constructs. Such character strings are called keywords. 

Character strings are also used as identifiers to name variables, arrays, func
tions, and the like. Grammars routinely t reat identifiers as terminals to sim
plify the parser, which can then expect the same terminal, say id, each time 
any identifier appears in the input. For example, on input 

count = count + increment; (2.6) 

the parser works with the terminal stream id = id + id. The token for id has 
an a t t r ibute tha t holds the lexeme. Writing tokens as tuples, we see tha t the 
tuples for the input stream (2.6) are 

(id, "count") (=) (id, "count") (+) (id, "increment") (;) 

Keywords generally satisfy the rules for forming identifiers, so a mechanism 
is needed for deciding when a lexeme forms a keyword and when it forms an 
identifier. The problem is easier to resolve if keywords are reserved; i.e., if they 
cannot be used as identifiers. Then, a character string forms an identifier only 
if it is not a keyword. 
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The lexical analyzer in this section solves two problems by using a table to 
hold character strings: 

• Single Representation. A string table can insulate the rest of the compiler 
from the representation of strings, since the phases of the compiler can 
work with references or pointers to the string in the table. References can 
also be manipulated more efficiently than the strings themselves. 

• Reserved Words. Reserved words can be implemented by initializing the 
string table with the reserved strings and their tokens. When the lexical 
analyzer reads a string or lexeme tha t could form an identifier, it first 
checks whether the lexeme is in the string table. If so, it returns the 
token from the table; otherwise, it returns a token with terminal id. 

In Java, a string table can be implemented as a hash table using a class 
called Hashtable. The declaration 

Hashtable words = n e w HashtableQ; 

sets up words as a default hash table tha t maps keys to values. We shall use it 
to map lexemes to tokens. The pseudocode in Fig. 2.31 uses the operation get 
to look up reserved words. 

if ( peek holds a letter ) { 
collect letters or digits into a buffer 6; 
s = string formed from the characters in 6; 
w = token returned by words.get(s); 
if ( w is not n u l l ) r e turn w; 
else { 

Enter the key-value pair (s, (id, s)) into words 

re turn token (id, s); 

} 
} 

Figure 2.31: Distinguishing keywords from identifiers 

This pseudocode collects from the input a string s consisting of letters and 
digits beginning with a letter. We assume tha t s is made as long as possible; 
i.e., the lexical analyzer will continue reading from the input as long as it 
encounters letters and digits. When something other than a letter or digit, e.g., 
white space, is encountered, the lexeme is copied into a buffer 6. If the table 
has an entry for s, then the token retrieved by words.get is returned. Here, s 
could be either a keyword, with which the words table was initially seeded, or 
it could be an identifier tha t was previously entered into the table. Otherwise, 
token id and a t t r ibute s are installed in the table and returned. 
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2.6.5 A Lexical Analyzer 

The pseudocode fragments so far in this section fit together to form a function 

scan tha t returns token objects, as follows: 

Token scanQ { 
skip white space, as in Section 2.6.1; 
handle numbers, as in Section 2.6.3; 
handle reserved words and identifiers, as in Section 2.6.4; 
/* if we get here, t reat read-ahead character peek as a token */ 
Token t = n e w Token(peek); 
peek = blank /* initialization, as discussed in Section 2.6.2 */ ; 
r e t u r n i ; 

} 
The rest of this section implements function scan as part of a Java package 

for lexical analysis. The package, called l e x e r has classes for tokens and a class 
Lexer containing function scan. 

The classes for tokens and their fields are illustrated in Fig. 2.32; their 
methods are not shown. Class Token has a field t a g tha t is used for parsing 
decisions. Subclass Num adds a field v a l u e for an integer value. Subclass Word 
adds a field lexeme tha t is used for reserved words and identifiers. 

c l a s s Token 

i n t tag 

c l a s s Num c l a s s Word 

i n t value s t r i n g lexeme 

Figure 2.32: Class Token and subclasses Num and Word 

Each class is in a file by itself. The file for class Token is as follows: 

1) package l e x e r ; / / File Token.java 
2) p u b l i c c l a s s Token { 
3 ) p u b l i c f i n a l i n t t a g ; 
4) p u b l i c T o k e n ( i n t t ) { t a g = t ; } 

5) > 

Line 1 identifies the package l e x e r . Field t a g is declared on line 3 to be f i n a l 
so it cannot be changed once it is set. The constructor Token on line 4 is used 
to create token objects, as in 

new T o k e n ( ' + ' ) 

which creates a new object of class Token and sets its field t a g to an integer 
representation of ' + '. (For brevity, we omit the customary method t o S t r i n g , 
which would return a string suitable for printing.) 
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Where the pseudocode had terminals like n u m and id, the Java code uses 
integer constants. Class Tag implements such constants: 

1) package l e x e r ; // File Tag.java 
2) p u b l i c c l a s s Tag { 
3 ) p u b l i c f i n a l s t a t i c i n t 
4) NUM = 256 , ID = 257, TRUE = 258 , FALSE = 259; 

5) > 

In addition to the integer-valued fields NUM and ID, this class defines two addi
tional fields, TRUE and FALSE, for future use; they will be used to illustrate the 
treatment of reserved keywords. 7 

The fields in class Tag are p u b l i c , so they can be used outside the package. 
They are s t a t i c , so there is just one instance or copy of these fields. The 
fields are f i n a l , so they can be set just once. In effect, these fields represent 
constants. A similar effect is achieved in C by using define-statements to allow 
names such as NUM to be used as symbolic constants, e.g.: 

#de f ine NUM 256 

The Java code refers to Tag. NUM and Tag. ID in places where the pseudocode 
referred to terminals n u m and id. The only requirement is that Tag.NUM and 
Tag. ID must be initialized with distinct values that differ from each other and 
from the constants representing single-character tokens, such as ' +' or ' * ' . 

1) package l e x e r ; // File Num.Java 
2) p u b l i c c l a s s Num extends Token { 
3 ) p u b l i c f i n a l i n t v a l u e ; 
4) p u b l i c Num(int v) { super(Tag.NUM); va lue = v; } 

5) > 

1) package l e x e r ; // File Word.java 
2) p u b l i c c l a s s Word extends Token { 
3) p u b l i c f i n a l S t r i n g lexeme; 
4) p u b l i c WordQnt t , S t r i n g s) { 
5) s u p e r ( t ) ; lexeme = new S t r i n g ( s ) ; 

6) > 
7) > 

Figure 2.33: Subclasses Num and Word of Token 

Classes Num and Word appear in Fig. 2.33. Class Num extends Token by 
declaring an integer field va lue on line 3. The constructor Num on line 4 calls 
super (Tag. NUM), which sets field t a g in the superclass Token to Tag. NUM. 

7 ASCII characters are typically converted into integers between 0 and 255. We therefore 
use integers greater than 255 for terminals. 
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1) package lexer; // File Lexer.Java 

2) import java.io.*; import java.util.*; 

3) public class Lexer { 

4) public int line = 1; 

5) private char peek = ' '; 

6) private Hashtable words = new HashtableO; 

7) void reserve(Word t) { words.put(t.lexeme, t ) ; } 

8) public Lexer () { 

9) reserve( new Word(Tag.TRUE, "true") ); 

10) reserve( new Word(Tag.FALSE, "false") ); 

11) > 

12) public Token scan() throws IOException { 

13) for( ; ; peek = (char)System.in.read() ) { 

14) if( peek == ' ' II peek == '\t' ) continue; 

15) else if( peek == ' \n ; ) line = line + 1; 

16) else break; 

17) } 

/* continues in Fig. 2.35 */ 

Figure 2.34: Code for a lexical analyzer, part 1 of 2 

Class Word is used for both reserved words and identifiers, so the constructor 
Word on line 4 expects two parameters: a lexeme and a corresponding integer 
value for tag. An object for the reserved word true can be created by executing 

new Word(Tag.TRUE, "true") 

which creates a new object with field tag set to Tag.TRUE and field lexeme set 
to the string "true". 

Class Lexer for lexical analysis appears in Figs. 2.34 and 2.35. The integer 
variable line on line 4 counts input lines, and character variable peek on line 5 
holds the next input character. 

Reserved words are handled on lines 6 through 11. The table words is 
declared on line 6. The helper function reserve on line 7 puts a string-word 
pair in the table. Lines 9 and 10 in the constructor Lexer initialize the table. 
They use the constructor Word to create word objects, which are passed to the 
helper function reserve. The table is therefore initialized with reserved words 
"true" and "false" before the first call of scan. 

The code for scan in Fig. 2.34-2.35 implements the pseudocode fragments 
in this section. The for-statement on lines 13 through 17 skips blank, t ab , 
and newline characters. Control leaves the for-statement with peek holding a 
non-white-space character. 

The code for reading a sequence of digits is on lines 18 through 25. The 
function isDigit is from the built-in Java class Character. It is used on 
line 18 to check whether peek is a digit. If so, the code on lines 19 through 24 
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Figure 2.35: Code for a lexical analyzer, par t 2 of 2 

accumulates the integer value of the sequence of digits in the input and returns 

a new Num object. 

Lines 26 through 38 analyze reserved words and identifiers. Keywords t rue 
and false have already been reserved on lines 9 and 10. Therefore, line 35 is 
reached if string s is not reserved, so it must be the lexeme for an identifier. 
Line 35 therefore returns a new word object with lexeme set to s and t a g set 
to Tag. ID. Finally, lines 39 through 41 return the current character as a token 
and set peek to a blank tha t will be stripped the next t ime scan is called. 

2.6.6 Exercises for Section 2.6 

Exerc i se 2 . 6 . 1 : Extend the lexical analyzer in Section 2.6.5 to remove com

ments, defined as follows: 

18) i f ( C h a r a c t e r . i s D i g i t ( p e e k ) ) { 
19) i n t v = 0; 
20) do { 
21) v = 10*v + C h a r a c t e r . d i g i t ( p e e k , 1 0 ) ; 
22) peek = ( c h a r ) S y s t e m . i n . r e a d ( ) ; 
23) } w h i l e ( C h a r a c t e r . i s D i g i t ( p e e k ) ); 
24) re turn new Num(v); 
25) } 
26) i f ( C h a r a c t e r . i s L e t t e r ( p e e k ) ) { 
27) S tr ingBuffer b = new S t r i n g B u f f e r ( ) ; 
28) do { 
29) b .append(peek); 
30) peek = ( c h a r ) S y s t e m . i n . r e a d ( ) ; 
31) } w h i l e ( Charac ter . i sLe t t erOrDig i t (peek) ); 
32) S t r i n g s = b . t o S t r i n g O ; 
33) Word w = (Word)words .get (s ) ; 
34) i f ( w != n u l l ) re turn w; 
35) w = new Word(Tag.ID, s ) ; 
36) w o r d s . p u t ( s , w); 
37) re turn w; 
38) } 
39) Token t = new Token(peek); 
40) peek = ' '; 
41) re turn t ; 
42) } 
43) } 
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a) A comment begins with // and includes all characters until the end of 

tha t line. 

b) A comment begins with /* and includes all characters through the next 
occurrence of the character sequence * / . 

E x e r c i s e 2 . 6 . 2 : Extend the lexical analyzer in Section 2.6.5 to recognize the 
relational operators <, <=, ==, !=, >=, >. 

E x e r c i s e 2 . 6 . 3 : Extend the lexical analyzer in Section 2.6.5 to recognize float
ing point numbers such as 2 . , 3 .14 , and . 5. 

2.7 Symbol Tables 

Symbol tables are da ta structures tha t are used by compilers to hold information 
about source-program constructs. The information is collected incrementally by 
the analysis phases of a compiler and used by the synthesis phases to generate 
the target code. Entries in the symbol table contain information about an 
identifier such as its character string (or lexeme), its type, its position in storage, 
and any other relevant information. Symbol tables typically need to support 
multiple declarations of the same identifier within a program. 

From Section 1.6.1, the scope of a declaration is the portion of a program 
to which the declaration applies. We shall implement scopes by setting up a 
separate symbol table for each scope. A program block with declarations 8 will 
have its own symbol table with an entry for each declaration in the block. This 
approach also works for other constructs tha t set up scopes; for example, a class 
would have its own table, with an entry for each field and method. 

This section contains a symbol-table module suitable for use with the Java 
translator fragments in this chapter. The module will be used as is when we 
put together the translator in Appendix A. Meanwhile, for simplicity, the main 
example of this section is a stripped-down language with just the key constructs 
tha t touch symbol tables; namely, blocks, declarations, and factors. All of the 
other statement and expression constructs are omitted so we can focus on the 
symbol-table operations. A program consists of blocks with optional declara
tions and "statements" consisting of single identifiers. Each such statement 
represents a use of the identifier. Here is a sample program in this language: 

{ i n t x; cha r y; { b o o l y; x; y; } x; y; } (2.7) 

The examples of block structure in Section 1.6.3 dealt with the definitions and 
uses of names; the input (2.7) consists solely of definitions and uses of names. 

The task we shall perform is to print a revised program, in which the decla
rations have been removed and each "statement" has its identifier followed by 
a colon and its type. 

8 I n C, for instance, program blocks are either functions or sections of functions that are 
separated by curly braces and that have one or more declarations within them. 
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Who Creates Symbol-Table Entries? 

Symbol-table entries are created and used during the analysis phase by the 
lexical analyzer, the parser, and the semantic analyzer. In this chapter, 
we have the parser create entries. With its knowledge of the syntactic 
structure of a program, a parser is often in a bet ter position than the 
lexical analyzer to distinguish among different declarations of an identifier. 

In some cases, a lexical analyzer can create a symbol-table entry as 
soon as it sees the characters tha t make up a lexeme. More often, the 
lexical analyzer can only return to the parser a token, say id, along with 
a pointer to the lexeme. Only the parser, however, can decide whether to 
use a previously created symbol-table entry or create a new one for the 
identifier. 

E x a m p l e 2 . 1 4 : On the above input (2.7), the goal is to produce: 

{ { x : i n t ; y r b o o l ; } x : i n t ; y : c h a r ; } 

The first x and y are from the inner block of input (2.7). Since this use of x 
refers to the declaration of x in the outer block, it is followed by i n t , the type 
of tha t declaration. The use of y in the inner block refers to the declaration of 
y in tha t very block and therefore has boolean type. We also see the uses of x 
and y in the outer block, with their types, as given by declarations of the outer 
block: integer and character, respectively. • 

2.7.1 Symbol Table Per Scope 

The term "scope of identifier really refers to the scope of a particular dec
laration of x. The term scope by itself refers to a portion of a program tha t is 
the scope of one or more declarations. 

Scopes are important , because the same identifier can be declared for differ
ent purposes in different par ts of a program. Common names like i and x often 
have multiple uses. As another example, subclasses can redeclare a method 
name to override a method in a superclass. 

If blocks can be nested, several declarations of the same identifier can appear 
within a single block. The following syntax results in nested blocks when stmts 
can generate a block: 

block -> '{' decls stmts '}' 

(We quote curly braces in the syntax to distinguish them from curly braces for 
semantic actions.) With the grammar in Fig. 2.38, decls generates an optional 
sequence of declarations and stmts generates an optional sequence of s tatements . 
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Optimization of Symbol Tables for Blocks 

Implementations of symbol tables for blocks can take advantage of the 
most-closely nested rule. Nesting ensures tha t the chain of applicable 
symbol tables forms a stack. At the top of the stack is the table for 
the current block. Below it in the stack are the tables for the enclosing 
blocks. Thus, symbol tables can be allocated and deallocated in a stack
like fashion. 

Some compilers maintain a single hash table of accessible entries; tha t 
is, of entries tha t are not hidden by a declaration in a nested block. Such 
a hash table supports essentially constant-time lookups, at the expense of 
inserting and deleting entries on block entry and exit. Upon exit from a 
block B, the compiler must undo any changes to the hash table due to 
declarations in block B. It can do so by using an auxiliary stack to keep 
track of changes to the hash table while block B is processed. 

Moreover, a statement can be a block, so our language allows nested blocks, 
where an identifier can be redeclared. 

The most-closely nested rule for blocks is tha t an identifier x is in the scope 
of the most-closely nested declaration of x; tha t is, the declaration of x found 
by examining blocks inside-out, starting with the block in which x appears. 

E x a m p l e 2 . 1 5 : The following pseudocode uses subscripts to distinguish a¬ 
mong distinct declarations of the same identifier: 

1) { int x i ; int yx; 
2) { int w2; b o o l y2; int z2; 
3) • • • w2 ••;••• xi y2 z2 •••; 

4) } 
5) • • • w0 • • •; ••• Xi ••• yi • • •; 

6) } 

The subscript is not par t of an identifier; it is in fact the line number of the 
declaration tha t applies to the identifier. Thus, all occurrences of x are within 
the scope of the declaration on line 1. The occurrence of y on line 3 is in the 
scope of the declaration of y on line 2 since y is redeclared within the inner block. 
The occurrence of y on line 5, however, is within the scope of the declaration 
of y on line 1. 

The occurrence of w on line 5 is presumably within the scope of a declaration 
of w outside this program fragment; its subscript 0 denotes a declaration tha t 
is global or external to this block. 

Finally, z is declared and used within the nested block, but cannot be used 
on line 5, since the nested declaration applies only to the nested block. • 
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The most-closely nested rule for blocks can be implemented by chaining 
symbol tables. T h a t is, the table for a nested block points to the table for its 
enclosing block. 

E x a m p l e 2 . 1 6 : Figure 2.36 shows symbol tables for the pseudocode in Exam
ple 2.15. B\ is for the block start ing on line 1 and is for the block start ing at 
line 2. At the top of the figure is an additional symbol table Bo for any global 
or default declarations provided by the language. During the time tha t we are 
analyzing lines 2 through 4, the environment is represented by a reference to 
the lowest symbol table — the one for B%. When we move to line 5, the symbol 
table for B^ becomes inaccessible, and the environment refers instead to the 
symbol table for B\, from which we can reach the global symbol table, but not 
the table for B2. • 

Bo w 

Bi X i n t 

y i n t 

B2 w i n t 

y DOOl 

z i n t 

Figure 2.36: Chained symbol tables for Example 2.15 

The Java implementation of chained symbol tables in Fig. 2.37 defines a 
class Env, short for environment.9 Class Env supports three operations: 

• Create a new symbol table. The constructor Env(p) on lines 6 through 
8 of Fig. 2.37 creates an Env object with a hash table named t a b l e . 
The object is chained to the environment-valued parameter p by setting 
field n e x t to p. Although it is the Env objects tha t form a chain, it is 
convenient to talk of the tables being chained. 

• Put a new entry in the current table. The hash table holds key-value 
pairs, where: 

— The key is a string, or rather a reference to a string. We could 
alternatively use references to token objects for identifiers as keys. 

- The value is an entry of class Symbol. The code on lines 9 through 
11 does not need to know the structure of an entry; tha t is, the code 
is independent of the fields and methods in class Symbol. 

9 "Environment" is another term for the collection of symbol tables that are relevant at a 
point in the program. 
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1) package symbols ; // File Env.java 

2) impor t j a v a . u t i l . * ; 
3) p u b l i c c l a s s Env { 
4 ) p r i v a t e H a s h t a b l e t a b l e ; 
5) p r o t e c t e d Env p r e v ; 

6) p u b l i c Env(Env p) { 

7) t a b l e = new H a s h t a b l e O ; p r e v = p; 

8) > 

9) p u b l i c v o i d p u t ( S t r i n g s, Symbol sym) { 

10) t a b l e . p u t ( s , sym); 

11) > 

12) p u b l i c Symbol g e t ( S t r i n g s) { 

13) f o r ( Env e = t h i s ; e != n u l l ; e = e . p r e v ) { 
14) Symbol found = ( S y m b o l ) ( e . t a b l e . g e t ( s ) ) ; 
15) i f ( found != n u l l ) r e t u r n found; 
16) } 
17) r e t u r n n u l l ; 
18) } 
19) } 

Figure 2.37: Class Env implements chained symbol tables 

• Get an entry for an identifier by searching the chain of tables, start ing 
with the table for the current block. The code for this operation on lines 
12 through 18 returns either a symbol-table entry or n u l l . 

Chaining of symbol tables results in a tree structure, since more than one 
block can be nested inside an enclosing block. The dotted lines in Fig. 2.36 are 
a reminder tha t chained symbol tables can form a tree. 

2.7.2 The Use of Symbol Tables 

In effect, the role of a symbol table is to pass information from declarations to 
uses. A semantic action "puts" information about identifier x into the symbol 
table, when the declaration of x is analyzed. Subsequently, a semantic action 
associated with a production such as factor ->• id "gets" information about 
the identifier from the symbol table. Since the translation of an expression 
Ei op E2, for a typical operator op , depends only on the translations of E\ and 
E2, and does not directly depend on the symbol table, we can add any number 
of operators without changing the basic flow of information from declarations 
to uses, through the symbol table. 

E x a m p l e 2 . 1 7 : The translation scheme in Fig. 2.38 illustrates how class Env 
can be used. The translation scheme concentrates on scopes, declarations, and 
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uses. It implements the translation described in Example 2.14. As noted earlier, 
on input 

program ->• { top = null; } 
block 

block -» { saved = top; 

top = n e w Env(top); 
pr in t ("{ " ) ; } 

decls stmts '}' { top = saved; 

printO'} "); } 

decls —> decls decl 

I e 

decl -»• t y p e id ; { s = n e w Symbol; 

s.type = t y p e , lexeme 
top.put (id. lexeme, s); } 

stmts -» stmts stmt 

stmt ->• 6/ocA; 
| factor ; { p r in t ( " ; " ) ; } 

factor -> id { s — top.get(id.lexeme); 
print (id. lexeme); 

p r i n t ( " : " ) ; } 
print (s.type); 

Figure 2.38: The use of symbol tables for translat ing a language with blocks 

{ i n t x; cha r y; { b o o l y; x; y; } x; y; } 

the translation scheme strips the declarations and produces 

{ { x : i n t ; y : b o o l ; } x : i n t ; y : c h a r ; } 

Notice tha t the bodies of the productions have been aligned in Fig. 2.38 
so tha t all the grammar symbols appear in one column, and all the actions in 
a second column. As a result, components of the body are often spread over 
several lines. 

Now, consider the semantic actions. The translation scheme creates and 
discards symbol tables upon block entry and exit, respectively. Variable top 
denotes the top table, at the head of a chain of tables. The first production of 
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the underlying grammar is program ->• block. The semantic action before block 
initializes top to null, with no entries. 

The second production, block -» '{' decls stmts'}', has actions upon block 
entry and exit. On block entry, before decls, a semantic action saves a reference 
to the current table using a local variable saved. Each use of this production 
has its own local variable saved, distinct from the local variable for any other 
use of this production. In a recursive-descent parser, saved would be local to 
the procedure for block. The t reatment of local variables of a recursive function 
is discussed in Section 7.2. The code 

top = n e w Env (top); 

sets variable top to a newly created new table tha t is chained to the previous 
value of top just before block entry. Variable top is an object of class Env; the 
code for the constructor Env appears in Fig. 2.37. 

On block exit, after ' } ' , a semantic action restores top to its value saved on 
block entry. In effect, the tables form a stack; restoring top to its saved value 
pops the effect of the declarations in the block. 1 0 Thus, the declarations in the 
block are not visible outside the block. 

A declaration, decls ->• t y p e id results in a new entry for the declared iden
tifier. We assume tha t tokens t y p e and id each have an associated at t r ibute , 
which is the type and lexeme, respectively, of the declared identifier. We shall 
not go into all the fields of a symbol object s, but we assume tha t there is a 
field type tha t gives the type of the symbol. We create a new symbol object s 
and assign its type properly by s.type — type. lexeme. The complete entry is 
put into the top symbol table by top.put(\d.lexeme, s). 

The semantic action in the production factor -> id uses the symbol table 
to get the entry for the identifier. The get operation searches for the first entry 
in the chain of tables, start ing with top. The retrieved entry contains any 
information needed about the identifier, such as the type of the identifier. • 

2.8 Intermediate Code Generation 

The front end of a compiler constructs an intermediate representation of the 
source program from which the back end generates the target program. In 
this section, we consider intermediate representations for expressions and state
ments, and give tutorial examples of how to produce such representations. 

2.8.1 Two Kinds of Intermediate Representations 

As was suggested in Section 2.1 and especially Fig. 2.4, the two most important 
intermediate representations are: 

1 0 Ins tead of explicitly saving and restoring tables, we could alternatively add static opera
tions push and pop to class Env. 
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• Trees, including parse trees and (abstract) syntax trees. 

• Linear representations, especially "three-address code." 

Abstract-syntax trees, or simply syntax trees, were introduced in Section 
2.5.1, and in Section 5.3.1 they will be reexamined more formally. During 
parsing, syntax-tree nodes are created to represent significant programming 
constructs. As analysis proceeds, information is added to the nodes in the form 
of at tr ibutes associated with the nodes. The choice of a t t r ibutes depends on 
the translation to be performed. 

Three-address code, on the other hand, is a sequence of elementary program 
steps, such as the addition of two values. Unlike the tree, there is no hierarchical 
structure. As we shall see in Chapter 9, we need this representation if we are 
to do any significant optimization of code. In tha t case, we break the long 
sequence of three-address statements tha t form a program into "basic blocks," 
which are sequences of statements tha t are always executed one-after-the-other, 
with no branching. 

In addition to creating an intermediate representation, a compiler front end 
checks tha t the source program follows the syntactic and semantic rules of the 
source language. This checking is called static checking; in general "static" 
means "done by the compiler ." 1 1 Static checking assures tha t certain kinds 
of programming errors, including type mismatches, are detected and reported 
during compilation. 

It is possible tha t a compiler will construct a syntax tree at the same time 
it emits steps of three-address code. However, it is common for compilers to 
emit the three-address code while the parser "goes through the motions" of 
constructing a syntax tree, without actually constructing the complete tree 
da ta structure. Rather, the compiler stores nodes and their a t t r ibutes needed 
for semantic checking or other purposes, along with the da ta structure used for 
parsing. By so doing, those parts of the syntax tree tha t are needed to construct 
the three-address code are available when needed, but disappear when no longer 
needed. We take up the details of this process in Chapter 5. 

2.8.2 Construction of Syntax Trees 

We shall first give a translation scheme tha t constructs syntax trees, and later, 
in Section 2.8.4, show how the scheme can be modified to emit three-address 
code, along with, or instead of, the syntax tree. 

Recall from Section 2.5.1 tha t the syntax tree 

1 1 Its opposite, "dynamic," means "while the program is running." Many languages also 
make certain dynamic checks. For instance, an object-oriented language like Java sometimes 
must check types during program execution, since the method applied to an object may 
depend on the particular subclass of the object. 
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op 

/ \ 
E\ E2 

represents an expression formed by applying the operator op to the subexpres
sions represented by E\ and E2. Syntax trees can be created for any construct, 
not just expressions. Each construct is represented by a node, with children 
for the semantically meaningful components of the construct. For example, the 
semantically meaningful components of a C while-statement: 

whi le ( expr ) stmt 

are the expression expr and the statement stmt.12 The syntax-tree node for such 
a while-statement has an operator, which we call whi le , and two children—the 
syntax trees for the expr and the stmt. 

The translation scheme in Fig. 2.39 constructs syntax trees for a repre
sentative, but very limited, language of expressions and statements. All the 
nonterminals in the translation scheme have an a t t r ibute n, which is a node of 
the syntax tree. Nodes are implemented as objects of class Node. 

Class Node has two immediate subclasses: Expr for all kinds of expressions, 
and Stmt for all kinds of statements. Each type of statement has a corresponding 
subclass of Stmt; for example, operator whi le corresponds to subclass While. 
A syntax-tree node for operator whi le with children x and y is created by the 
pseudocode 

n e w While (x,y) 

which creates an object of class While by calling constructor function While, 
with the same name as the class. Just as constructors correspond to operators, 
constructor parameters correspond to operands in the abstract syntax. 

When we study the detailed code in Appendix A, we shall see how methods 
are placed where they belong in this hierarchy of classes. In this section, we 
shall discuss only a few of the methods, informally. 

We shall consider each of the productions and rules of Fig. 2.39, in turn . 
First, the productions defining different types of statements are explained, fol
lowed by the productions tha t define our limited types of expressions. 

S y n t a x Trees for S t a t e m e n t s 

For each statement construct, we define an operator in the abstract syntax. For 
constructs tha t begin with a keyword, we shall use the keyword for the operator. 
Thus, there is an operator wh i l e for while-statements and an operator do for 
do-while statements. Conditionals can be handled by defining two operators 

1 2 T h e right parenthesis serves only to separate the expression from the statement. The left 
parenthesis actually has no meaning; it is there only to please the eye, since without it, C 
would allow unbalanced parentheses. 
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program -» block 

block —»• '{' stmts '}' 

stmts -y stmtsi stmt 

I e 

stmt -» expr ; 
| if ( expr ) stmti 

whi le ( expr ) 

do stmt\ whi le 

block 

expr —»• rel - exprx 

I rel 

rel -> rel\ < a 
| rek <= 

add -» ftrfrfi + ierw 
| term 

term -> iermi * factor 
| factor 

factor ( ezpr ) 
n u m 

return block.n; } 

block.n = stmts.n; } 

stmts.n = n e w Seq(stmtsi.n, stmt.n)] } 
stmts.n = null; } 

stmt.n = n e w Eval(expr.n); } 

stmt.n = n e w If(expr.n,stmti.n); } 
stmti 

stmt.n = n e w While (expr.n, stmti.n); } 
( expr ) ; 
stmt.n = n e w Do (stmti.n, expr.n); } 
stmt.n = block.n; } 

expr.n = n e w Assign ( '= ' , re/.n, errpr^.n); } 
expr.n = rein; } 

rein = n e w Rel('<', reli.n, add.n); } 
rein = n e w Rel('<', reli.n, add.n); } 
re/.n = add.n; } 

add.n = n e w 0 p ( ' + ' , addi.n, term.n); } 
.n = term.n; } 

term.n = n e w 0p('*',termi.n,factor.n); } 

term.n = factor.n; } 

factor.n = expr.n; } 
factor.n = n e w Num (num.value); } 

Figure 2.39: Construction of syntax trees for expressions and statements 
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ifelse and if for if-statements with and without an else par t , respectively. In our 
simple example language, we do not use e lse , and so have only an if-statement. 
Adding e l se presents some parsing issues, which we discuss in Section 4.8.2. 

Each statement operator has a corresponding class of the same name, with 
a capital first letter; e.g., class If corresponds to if. In addition, we define 
the subclass Seq, which represents a sequence of statements. This subclass 
corresponds to the nonterminal stmts of the grammar. Each of these classes are 
subclasses of Stmt, which in turn is a subclass of Node. 

The translation scheme in Fig. 2.39 illustrates the construction of syntax-
tree nodes. A typical rule is the one for if-statements: 

stmt ->• if ( expr ) stmti { stmt.n = n e w If (expr.n, stmt\.n); } 

The meaningful components of the if-statement are expr and stmt\. The se
mantic action defines the node stmt.n as a new object of subclass If. The code 
for the constructor // is not shown. It creates a new node labeled if with the 
nodes expr.n and stmt\.n as children. 

Expression statements do not begin with a keyword, so we define a new op
erator eval and class Eval, which is a subclass of Stmt, to represent expressions 
tha t are statements. The relevant rule is: 

stmt -> expr ; { stmt.n = n e w Eval (expr.n); } 

R e p r e s e n t i n g B l o c k s in S y n t a x Trees 

The remaining statement construct in Fig. 2.39 is the block, consisting of a 
sequence of statements. Consider the rules: 

stmt -» block { stmt.n = block.n; } 
block -» '{' stmts '}' { block.n = stmts.n; } 

The first says tha t when a statement is a block, it has the same syntax tree as 
the block. The second rule says tha t the syntax tree for nonterminal block is 
simply the syntax tree for the sequence of statements in the block. 

For simplicity, the language in Fig. 2.39 does not include declarations. Even 
when declarations are included in Appendix A, we shall see tha t the syntax 
tree for a block is still the syntax tree for the statements in the block. Since 
information from declarations is incorporated into the symbol table, they are 
not needed in the syntax tree. Blocks, with or without declarations, therefore 
appear to be just another statement construct in intermediate code. 

A sequence of statements is represented by using a leaf nul l for an empty 
statement and a operator s eq for a sequence of statements, as in 

stmts -*• stmtsi stmt { stmts.n = n e w Seq(stmts1.n, stmt.n); } 
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E x a m p l e 2 . 1 8 : In Fig. 2.40 we see par t of a syntax tree representing a block 
or statement list. There are two statements in the list, the first an if-statement 
and the second a while-statement. We do not show the portion of the tree 
above this statement list, and we show only as a triangle each of the necessary 
subtrees: two expression trees for the conditions of the if- and while-statements, 
and two statement trees for their substatements. • 

Figure 2.40: Par t of a syntax tree for a statement list consisting of an if-
statement and a while-statement 

S y n t a x Trees for Express ions 

Previously, we handled the higher precedence of * over + by using three non
terminals expr, term, and factor. The number of nonterminals is precisely one 
plus the number of levels of precedence in expressions, as we suggested in Sec
tion 2.2.6. In Fig. 2.39, we have two comparison operators, < and <= at one 
precedence level, as well as the usual + and * operators, so we have added one 
additional nonterminal, called add. 

Abstract syntax allows us to group "similar" operators to reduce the number 
of cases and subclasses of nodes in an implementation of expressions. In this 
chapter, we take "similar" to mean tha t the type-checking and code-generation 
rules for the operators are similar. For example, typically the operators + and * 
can be grouped, since they can be handled in the same way — their requirements 
regarding the types of operands are the same, and they each result in a single 
three-address instruction that applies one operator to two values. In general, 
the grouping of operators in the abstract syntax is based on the needs of the 
later phases of the compiler. The table in Fig. 2.41 specifies the correspondence 
between the concrete and abstract syntax for several of the operators of Java. 

In the concrete syntax, all operators are left associative, except the assign
ment operator =, which is right associative. The operators on a line have the 
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C O N C R E T E S Y N T A X A B S T R A C T S Y N T A X 

= ass ign 

11 c o n d 
&& c o n d 

== ! = rel 
<= >= > rel 
+ - op 

* / •/. op 
j no t 

~ unary m i n u s 

[] access 

Figure 2.41: Concrete and abstract syntax for several Java operators 

same precedence; tha t is, == and != have the same precedence. The lines are 
in order of increasing precedence; e.g., == has higher precedence than the oper
ators && and =. The subscript unary in - unary is solely to distinguish a leading 
unary minus sign, as in - 2 , from a binary minus sign, as in 2 -a . The operator 
[] represents array access, as in a [ i ] . 

The abstract-syntax column specifies the grouping of operators. The assign
ment operator = is in a group by itself. The group cond contains the conditional 
boolean operators && and I I. The group rel contains the relational comparison 
operators on the lines for == and <. The group op contains the arithmetic 
operators like + and *. Unary minus, boolean negation, and array access are in 
groups by themselves. 

The mapping between concrete and abstract syntax in Fig. 2.41 can be 
implemented by writing a translation scheme. The productions for nonterminals 
expr, rel, add, term, and factor in Fig. 2.39 specify the concrete syntax for a 
representative subset of the operators in Fig. 2.41. The semantic actions in 
these productions create syntax-tree nodes. For example, the rule 

term —b termi * factor { term.n = n e w Op(V , t erm\ .n , fac tor .n) ; } 

creates a node of class Op, which implements the operators grouped under op 
in Fig. 2.41. The constructor Op has a parameter '*' to identify the actual 
operator, in addition to the nodes termy.n and factor.n for the subexpressions. 

2.8.3 Static Checking 

Static checks are consistency checks tha t are done during compilation. Not only 
do they assure tha t a program can be compiled successfully, but they also have 
the potential for catching programming errors early, before a program is run. 
Static checking includes: 

• Syntactic Checking. There is more to syntax than grammars. For ex
ample, constraints such as an identifier being declared at most once in a 
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scope, or tha t a break statement must have an enclosing loop or switch 
statement, are syntactic, although they are not encoded in, or enforced 
by, a grammar used for parsing. 

• Type Checking. The type rules of a language assure tha t an operator or 
function is applied to the right number and type of operands. If conversion 
between types is necessary, e.g., when an integer is added to a float, then 
the type-checker can insert an operator into the syntax tree to represent 
tha t conversion. We discuss type conversion, using the common term 
"coercion," below. 

L-values and R-va lues 

We now consider some simple static checks tha t can be done during the con
struction of a syntax tree for a source program. In general, complex static checks 
may need to be done by first constructing an intermediate representation and 
then analyzing it. 

There is a distinction between the meaning of identifiers on the left and 
right sides of an assignment. In each of the assignments 

i = 5 ; 

i = i + 1; 

the right side specifies an integer value, while the left side specifies where the 
value is to be stored. The terms l-value and r-value refer to values tha t are 
appropriate on the left and right sides of an assignment, respectively. Tha t is, 
r-values are what we usually think of as "values," while /-values are locations. 

Static checking must assure tha t the left side of an assignment denotes an 
/-value. An identifier like i has an /-value, as does an array access like a [ 2 ] . 
But a constant like 2 is not appropriate on the left side of an assignment, since 
it has an r-value, but not an /-value. 

T y p e Check ing 

Type checking assures tha t the type of a construct matches tha t expected by 
its context. For example, in the if-statement 

if ( expr ) stmt 

the expression expr is expected to have type b o o l e a n . 
Type checking rules follow the opera tor /operand structure of the abstract 

syntax. Assume the operator rel represents relational operators such as <=. 
The type rule for the operator group rel is tha t its two operands must have the 
same type, and the result has type boolean. Using at t r ibute type for the type 
of an expression, let E consist of rel applied to Ei and E2. The type of E can 
be checked when its node is constructed, by executing code like the following: 
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if ( Ei.type == E2.type ) E.type = boolean; 
e lse error; 

The idea of matching actual with expected types continues to apply, even 

in the following situations: 

• Coercions. A coercion occurs if the type of an operand is automatically 
converted to the type expected by the operator. In an expression like 
2 * 3 .14 , the usual transformation is to convert the integer 2 into an 
equivalent floating-point number, 2 . 0 , and then perform a floating-point 
operation on the resulting pair of floating-point operands. The language 
definition specifies the allowable coercions. For example, the actual rule 
for rel discussed above might be tha t Ei.type and E2.type are convertible 
to the same type. In tha t case, it would be legal to compare, say, an 
integer with a float. 

• Overloading. The operator + in Java represents addition when applied 
to integers; it means concatenation when applied to strings. A symbol is 
said to be overloaded if it has different meanings depending on its context. 
Thus, + is overloaded in Java. The meaning of an overloaded operator is 
determined by considering the known types of its operands and results. 
For example, we know tha t the + in z = x + y is concatenation if we know 
tha t any of x, y, or z is of type string. However, if we also know tha t 
another one of these is of type integer, then we have a type error and 
there is no meaning to this use of +. 

2.8.4 Three-Address Code 

Once syntax trees are constructed, further analysis and synthesis can be done 
by evaluating at tr ibutes and executing code fragments at nodes in the tree. 
We illustrate the possibilities by walking syntax trees to generate three-address 
code. Specifically, we show how to write functions tha t process the syntax tree 
and, as a side-effect, emit the necessary three-address code. 

T h r e e - A d d r e s s Ins truc t ions 

Three-address code is a sequence of instructions of the form 

x - y op z 

where x, y, and z are names, constants, or compiler-generated temporaries; and 
op stands for an operator. 

Arrays will be handled by using the following two variants of instructions: 

x [ y ] - z 
x = y [ z 1 
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The first puts the value of z in the location x[y], and the second puts the value 
of y[z] in the location x. 

Three-address instructions are executed in numerical sequence unless forced 
to do otherwise by a conditional or unconditional jump. We choose the following 
instructions for control flow: 

if False x goto L if £ is false, next execute the instruction labeled L 
if True x goto L if rc is true, next execute the instruction labeled L 
goto L next execute the instruction labeled L 

A label L can be at tached to any instruction by prepending a prefix L: . An 
instruction can have more than one label. 

Finally, we need instructions tha t copy a value. The following three-address 
instruction copies the value of y into x: 

x= y 

Trans lat ion o f S t a t e m e n t s 

Statements are translated into three-address code by using jump instructions 
to implement the flow of control through the statement. The layout in Fig. 2.42 
illustrates the translation of if expr t h e n stmti. The jump instruction in the 
layout 

if False x goto after 

jumps over the translation of stmti if expr evaluates to false. Other statement 
constructs are similarly translated using appropriate jumps around the code for 
their components. 

code to compute 
expr into x 

if False x goto after 

code for stmti 

after—*- ; 

Figure 2.42: Code layout for if-statements 

For concreteness, we show the pseudocode for class If in Fig. 2.43. Class 
If is a subclass of Stmt, as are the classes for the other s tatement constructs. 
Each subclass of Stmt has a constructor — // in this case — and a function gen 
tha t is called to generate three-address code for this kind of s tatement. 
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class // e x t e n d s Stmt { 
Expr E; Stmt S; 
publ ic If (Expr x, Stmt y) { E = x; S = y; after = newlabelQ; } 
publ ic vo id gen() { 

Expr n = E.rvalueQ; 

emit( "ifFalse " + n.toStringQ + " goto " + after); 

S.genQ; 
emit (after + ":"); 

} 

Figure 2.43: Function gen in class / /genera tes three-address code 

The constructor // in Fig. 2.43 creates syntax-tree nodes for if-statements. 
It is called with two parameters, an expression node x and a statement node 
y, which it saves as at tr ibutes E and 5. The constructor also assigns a t t r ibute 
after a unique new label, by calling function newlabelQ. The label will be used 
according to the layout in Fig. 2.42. 

Once the entire syntax tree for a source program is constructed, the function 
gen is called at the root of the syntax tree. Since a program is a block in 
our simple language, the root of the syntax tree represents the sequence of 
statements in the block. All statement classes contain a function gen. 

The pseudocode for function gen of class / / i n Fig. 2.43 is representative. It 
calls E.rvalueQ to translate the expression E (the boolean-valued expression 
tha t is par t of the if-statements) and saves the result node returned by E. 
Translation of expressions will be discussed shortly. Function gen then emits a 
conditional jump and calls S.genQ to t ranslate the substatement S. 

Trans lat ion of Expres s ions 

We now illustrate the translation of expressions by considering expressions con
taining binary operators op, array accesses, and assignments, in addition to 
constants and identifiers. For simplicity, in an array access y[z], we require tha t 
y be an identifier. 1 3 For a detailed discussion of intermediate code generation 
for expressions, see Section 6.4. 

We shall take the simple approach of generating one three-address instruc
tion for each operator node in the syntax tree for an expression. No code is 
generated for identifiers and constants, since they can appear as addresses in 
instructions. If a node x of class Expr has operator op , then an instruction is 
emitted to compute the value at node x into a compiler generated "temporary" 
name, say t . Thus, i - j + k translates into two instructions 

1 3 T h i s simple language supports a[a[n]], but not a[m] [n]. Note that a[a[n]] has the 
form a [£?], where E is a [n]. 
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t l = i - j 
t 2 = t l + k 

With array accesses and assignments comes the need to distinguish between 
/-values and r-values. For example, 2 * a [ i ] can be translated by computing the 
r-value of a [ i ] into a temporary, as in 

t l = a [ i ] 
t 2 = 2 * t l 

But, we cannot simply use a temporary in place of a [ i ] , if a [ i ] appears on 
the left side of an assignment. 

The simple approach uses the two functions lvalue and rvalue, which appear 
in Fig. 2.44 and 2.45, respectively. When function rvalue is applied to a nonleaf 
node x, it generates instructions to compute x into a temporary, and returns 
a new node representing the temporary. When function lvalue is applied to a 
nonleaf, it also generates instructions to compute the subtrees below x, and 
returns a node representing the "address" for x. 

We describe function lvalue first, since it has fewer cases. When applied 
to a node x, function lvalue simply returns x if it is the node for an identifier 
(i.e., if x is of class Id). In our simple language, the only other case where 
an expression has an /-value occurs when x represents an array access, such as 
a [ i ] . In this case, x will have the form Access(y, z), where class Access is a 
subclass of Expr, y represents the name of the accessed array, and z represents 
the offset (index) of the chosen element in tha t array. From the pseudo-code 
in Fig. 2.44, function lvalue calls rvalue(z) to generate instructions, if needed, 
to compute the r-value of z. It then constructs and returns a new Access node 
with children for the array name y and the r-value of z. 

Expr lvalue(x : Expr) { 
if ( x is an Id node ) r e turn x; 
else if ( x is an Access (y, z) node and y is an Id node ) { 

re turn n e w Access(y, rvalue(z)); 

} 
else error; 

} 

Figure 2.44: Pseudocode for function lvalue 

E x a m p l e 2 . 1 9 : When node x represents the array access a [ 2 * k ] , the call 

lvalue(x) generates an instruction 

t = 2 * k 

and returns a new node x' representing the /-value a [ t ] , where t is a new 

temporary name. 
In detail, the code fragment 
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r e t u r n n e w Access(y, rvalue(z)); 

is reached with y being the node for a and z being the node for expression 2*k. 
The cail rvalue(z) generates code for the expression 2*k (i.e., the three-address 
statement t = 2 * k) and returns the new node z' representing the temporary 
name t. Tha t node z' becomes the value of the second field in the new Access 
node x' tha t is created. • 

Expr rvalue(x : Expr) { 
if ( x is an Id or a Constant node ) r e turn x; 
else if ( x is an Op(op,y,z) or a Rel(op,y,z) node ) { 

t = new temporary; 
emit string for t = rvalue(y) op rvalue(z); 
re turn a new node for t; 

} 
else if ( x is an Access (y,z) node ) { 

t — new temporary; 
call lvalue(x), which returns Access(y, z'); 
emit string for t = Access(y, z')\ 
r e t u r n a new node for t; 

} 
else if ( x is an Assign (y, z) node ) { 

z' = rvalue(z)] 
emit string for lvalue(y) = z'; 
r e t u r n z'; 

} 
} 

Figure 2.45: Pseudocode for function rvalue 

Function rvalue in Fig. 2.45 generates instructions and returns a possibly 
new node. When x represents an identifier or a constant, rvalue returns x itself. 
In all other cases, it returns an Id node for a new temporary t. The cases are 
as follows: 

• When x represents y op z, the code first computes y' = rvalue(y) and 
z' = rvalue(z). It creates a new temporary t and generates an instruc
tion t = y' op z' (more precisely, an instruction formed from the string 
representations of t, y', op , and z'). It returns a node for identifier t. 

• When x represents an array access ylz], we can reuse function lvalue. 
The call lvalue(x) returns an access y [ 2 ' ] , where z ' represents an identifier 
holding the offset for the array access. The code creates a new temporary 
t, generates an instruction based on t = y tz'l, and returns a node for t. 
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• When x represents y = z, then the code first computes z' = rvalue(z). It 
generates an instruction based on lvalue(y) = z' and returns the node z'. 

E x a m p l e 2 . 2 0 : When applied to the syntax tree for 

a [ i ] = 2 * a [ j - k ] 

function rvalue generates 

t 3 = j - k 
t 2 = a [ t 3 ] 
t l = 2 * t 2 
a [ i ] = t l 

That is, the root is an Assign node with first argument a [ i ] and second ar
gument 2 * a [ j - k ] . Thus, the third case applies, and function rvalue recursively 
evaluates 2 * a [ j - k ] . The root of this subtree is the Op node for *, which causes 
a new temporary tl to be created, before the left operand, 2 is evaluated, and 
then the right operand. The constant 2 generates no three-address code, and 
its r-value is returned as a Constant node with value 2. 

The right operand a [ j - k ] is an Access node, which causes a new temporary 
t2 to be created, before function lvalue is called on this node. Recursively, 
rvalue is called on the expression j -k. As a side-effect of this call, the three-
address statement t3 = j - k is generated, after the new temporary t3 is 
created. Then, returning to the call of lvalue on a [ j - k ] , the temporary t2 is 
assigned the r-value of the entire access-expression, that is, t2 = a [ t3 ]. 

Now, we return to the call of rvalue on the Op node 2 * a [ j - k ] , which earlier 
created temporary t l . A three-address statement 11 = 2 * 12 is generated as 
a side-effect, to evaluate this multiplication-expression. Last, the call to rvalue 
on the whole expression completes by calling lvalue on the left side a [ i ] and 
then generating a three-address instruction a [ i ] = t l , i n which the right 
side of the assignment is assigned to the left side. • 

B e t t e r C o d e for Expres s ions 

We can improve on function rvalue in Fig. 2.45 and generate fewer three-address 
instructions, in several ways: 

• Reduce the number of copy instructions in a subsequent optimization 
phase. For example, the pair of instructions t = i+1 and i = t can be 
combined into i = i + 1 , if there are no subsequent uses of t. 

• Generate fewer instructions in the first place by taking context into ac
count. For example, if the left side of a three-address assignment is an 
array access a [ t ] , then the right side must be a name, a constant, or a 
temporary, all of which use just one address. But if the left side is a name 
x, then the right side can be an operation y op z tha t uses two addresses. 
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We can avoid some copy instructions by modifying the translation functions 
to generate a partial instruction tha t computes, say j+k, but does not commit 
to where the result is to be placed, signified by a null address for the result: 

null = j + k (2.8) 

The null result address is later replaced by either an identifier or a temporary, 
as appropriate. It is replaced by an identifier if j+k is on the right side of an 
assignment, as in i = j + k ; , in which case (2.8) becomes 

i = j + k 

But, if j+k is a subexpression, as in j+k+1, then the null result address in (2.8) 
is replaced by a new temporary t, and a new partial instruction is generated 

t = j + k 
null = t + 1 

Many compilers make every effort to generate code tha t is as good as or bet
ter than hand-written assembly code produced by experts. If code-optimization 
techniques, such as the ones in Chapter 9 are used, then an effective strategy 
may well be to use a simple approach for intermediate code generation, and 
rely on the code optimizer to eliminate unnecessary instructions. 

2.8.5 Exercises for Section 2.8 

E x e r c i s e 2 . 8 . 1 : For-statements in C and Java have the form: 

for ( exprx ; expr2 ; expr3 ) stmt 

The first expression is executed before the loop; it is typically used for initializ
ing the loop index. The second expression is a test made before each iteration 
of the loop; the loop is exited if the expression becomes 0. The loop itself can be 
thought of as the statement {stmt expr3;}. The third expression is executed 
at the end of each iteration; it is typically used to increment the loop index. 
The meaning of the for-statement is similar to 

expr±; w h i l e ( expr2 ) {stmt expr3; } 

Define a class For for for-statements, similar to class / / i n Fig. 2.43. 

E x e r c i s e 2 . 8 . 2 : The programming language C does not have a boolean type. 
Show how a C compiler might translate an if-statement into three-address code. 

2.9 Summary of Chapter 2 

The syntax-directed techniques in this chapter can be used to construct compiler 
front ends, such as those illustrated in Fig. 2.46. 
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Figure 2.46: Two possible translations of a statement 

• The start ing point for a syntax-directed translator is a grammar for the 
source language. A grammar describes the hierarchical structure of pro
grams. It is defined in terms of elementary symbols called terminals and 
variable symbols called nonterminals. These symbols represent language 
constructs. The rules or productions of a grammar consist of a nonterminal 
called the head or left side of a production and a sequence of terminals 
and nonterminals called the body or right side of the production. One 
nonterminal is designated as the start symbol. 

• In specifying a translator, it is helpful to a t tach at t r ibutes to programming 
construct, where an attribute is any quantity associated with a construct. 
Since constructs are represented by grammar symbols, the concept of 
at tr ibutes extends to grammar symbols. Examples of at tr ibutes include 
an integer value associated with a terminal n u m representing numbers, 
and a string associated with a terminal id representing identifiers. 

• A lexical analyzer reads the input one character at a t ime and produces 
as output a stream Of tokens, where a token consists of a terminal symbol 
along with additional information in the form of a t t r ibute values. In 
Fig. 2.46, tokens are written as tuples enclosed between ( ). The token 
(id, "peek") consists of the terminal id and a pointer to the symbol-table 
entry containing the string "peek". The translator uses the table to keep 

An' 

or 

if 

peek ( i n t ) 

assign 

+ 

if( peek == '\n' ) line = line + 1; 

X 
Lexical Analyzer 

1 
(if) {(> (id, "peek") (eq> (const, »\n») ()) 

(id, "line") (assign) (id, "line") (+) (num, 1) (;) 

.__ X , 
Syntax-Directed Translator 

~r 
tl = (int) '\n' 

ifFalse peek == tl goto 4 

line = line + 1 
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track of reserved words and identifiers tha t have already been seen. 

4- Parsing is the problem of figuring out how a string of terminals can be 
derived from the start symbol of the grammar by repeatedly replacing a 
nonterminal by the body of one of its productions. Conceptually, a parser 
builds a parse tree in which the root is labeled with the start symbol, 
each nonleaf corresponds to a production, and each leaf is labeled with 
a terminal or the empty string e. The parse tree derives the string of 
terminals at the leaves, read from left to right. 

4* Efficient parsers can be built by hand, using a top-down (from the root to 
the leaves of a parse tree) method called predictive parsing. A predictive 
parser has a procedure for each nonterminal; procedure bodies mimic the 
productions for nonterminals; and, the flow of control through the pro
cedure bodies can be determined unambiguously by looking one symbol 
ahead in the input stream. See Chapter 4 for other approaches to parsing. 

• Syntax-directed translation is done by attaching either rules or program 
fragments to productions in a grammar. In this chapter, we have consid
ered only synthesized a t t r ibutes — the value of a synthesized a t t r ibute at 
any node x can depend only on at tr ibutes at the children of re, if any. A 
syntax-directed definition attaches rules to productions; the rules compute 
a t t r ibute vales. A translation scheme embeds program fragments called 
semantic actions in production bodies. The actions are executed in the 
order tha t productions are used during syntax analysis. 

• The result of syntax analysis is a representation of the source program, 
called intermediate code. Two primary forms of intermediate code are il
lustrated in Fig. 2.46. An abstract syntax tree has nodes for programming 
constructs; the children of a node give the meaningful sub constructs. Al
ternatively, three-address code is a sequence of instructions in which each 
instruction carries out a single operation. 

• Symbol tables are da ta structures tha t hold information about identifiers. 
Information is put into the symbol table when the declaration of an iden
tifier is analyzed. A semantic action gets information from the symbol 
table when the identifier is subsequently used, for example, as a factor in 
an expression. 





Chapter 3 

Lexical Analysis 

In this chapter we show how to construct a lexical analyzer. To implement a 
lexical analyzer by hand, it helps to start with a diagram or other description for 
the lexemes of each token. We can then write code to identify each occurrence of 
each lexeme on the input and to return information about the token identified. 

We can also produce a lexical analyzer automatically by specifying the lex
eme pat terns to a lexical-analyzer generator and compiling those pat terns into 
code tha t functions as a lexical analyzer. This approach makes it easier to mod
ify a lexical analyzer, since we have only to rewrite the affected pat terns , not 
the entire program. It also speeds up the process of implementing the lexical 
analyzer, since the programmer specifies the software at the very high level of 
pat terns and relies on the generator to produce the detailed code. We shall 
introduce in Section 3.5 a lexical-analyzer generator called Lex (or Flex in a 
more recent embodiment). 

We begin the study of lexical-analyzer generators by introducing regular 
expressions, a convenient notation for specifying lexeme pat terns. We show 
how this notation can be transformed, first into nondeterministic au tomata 
and then into deterministic automata . The latter two notations can be used as 
input to a "driver," tha t is, code which simulates these au tomata and uses them 
as a guide to determining the next token. This driver and the specification of 
the automaton form the nucleus of the lexical analyzer. 

3.1 The Role of the Lexical Analyzer 

As the first phase of a compiler, the main task of the lexical analyzer is to 
read the input characters of the source program, group them into lexemes, and 
produce as output a sequence of tokens for each lexeme in the source program. 
The stream of tokens is sent to the parser for syntax analysis. It is common 
for the lexical analyzer to interact with the symbol table as well. When the 
lexical analyzer discovers a lexeme constituting an identifier, it needs to enter 
tha t lexeme into the symbol table. In some cases, information regarding the 

1 0 9 
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kind of identifier may be read from the symbol table by the lexical analyzer to 
assist it in determining the proper token it must pass to the parser. 

These interactions are suggested in Fig. 3.1. Commonly, the interaction is 
implemented by having the parser call the lexical analyzer. The call, suggested 
by the getNextToken command, causes the lexical analyzer to read characters 
from its input until it can identify the next lexeme and produce for it the next 
token, which it returns to the parser. 

source 

program 

to semantic 

analysis 

Symbol 

Table 

Figure 3.1: Interactions between the lexical analyzer and the parser 

Since the lexical analyzer is the par t of the compiler tha t reads the source 
text , it may perform certain other tasks besides identification of lexemes. One 
such task is stripping out comments and whitespace (blank, newline, t ab , and 
perhaps other characters tha t are used to separate tokens in the input) . Another 
task is correlating error messages generated by the compiler with the source 
program. For instance, the lexical analyzer may keep track of the number 
of newline characters seen, so it can associate a line number with each error 
message. In some compilers, the lexical analyzer makes a copy of the source 
program with the error messages inserted at the appropriate positions. If the 
source program uses a macro-preprocessor, the expansion of macros may also 
be performed by the lexical analyzer. 

Sometimes, lexical analyzers are divided into a cascade of two processes: 

a) Scanning consists of the simple processes tha t do not require tokenization 
of the input, such as deletion of comments and compaction of consecutive 
whitespace characters into one. 

b) Lexical analysis proper is the more complex portion, where the scanner 
produces the sequence of tokens as output . 

3.1.1 Lexical Analysis Versus Parsing 

There are a number of reasons why the analysis portion of a compiler is normally 
separated into lexical analysis and parsing (syntax analysis) phases. 
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1. Simplicity of design is the most important consideration. The separation 
of lexical and syntactic analysis often allows us to simplify at least one 
of these tasks. For example, a parser tha t had to deal with comments 
and whitespace as syntactic units would be considerably more complex 
than one tha t can assume comments and whitespace have already been 
removed by the lexical analyzer. If we are designing a new language, 
separating lexical and syntactic concerns can lead to a cleaner overall 
language design. 

2. Compiler efficiency is improved. A separate lexical analyzer allows us to 
apply specialized techniques tha t serve only the lexical task, not the job 
of parsing. In addition, specialized buffering techniques for reading input 
characters can speed up the compiler significantly. 

3. Compiler portability is enhanced. Input-device-specific peculiarities can 
be restricted to the lexical analyzer. 

3.1.2 Tokens, Patterns, and Lexemes 

When discussing lexical analysis, we use three related but distinct terms: 

• A token is a pair consisting of a token name and an optional a t t r ibute 
value. The token name is an abstract symbol representing a kind of 
lexical unit, e.g., a particular keyword, or a sequence of input characters 
denoting an identifier. The token names are the input symbols tha t the 
parser processes. In what follows, we shall generally write the name of a 
token in boldface. We will often refer to a token by its token name. 

• A pattern is a description of the form tha t the lexemes of a token may take. 
In the case of a keyword as a token, the pat tern is just the sequence of 
characters tha t form the keyword. For identifiers and some other tokens, 
the pat tern is a more complex structure tha t is matched by many strings. 

• A lexeme is a sequence of characters in the source program tha t matches 
the pat tern for a token and is identified by the lexical analyzer as an 
instance of tha t token. 

E x a m p l e 3 . 1 : Figure 3.2 gives some typical tokens, their informally described 
pat terns, and some sample lexemes. To see how these concepts are used in 
practice, in the C statement 

p r i n t f ( " T o t a l = %d\n", s c o r e ) ; 

both p r i n t f and s c o r e are lexemes matching the pat tern for token id, and 
" T o t a l = °/,d\n" is a lexeme matching l i t e r a l . • 

In many programming languages, the following classes cover most or all of 
the tokens: 
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T O K E N I N F O R M A L D E S C R I P T I O N S A M P L E L E X E M E S 

if characters i, f 

characters e, 1, s, e 

i f 

e lse e l s e 

c o m p a r i s o n < or > or <= or >= or == or ! = <=, ! = 

pi , score , D2 

3 .14159, 0, 6 .02e23 

"core dumped" 

id letter followed by letters and digits 

any numeric constant 

anything but ", surrounded by "'s 

n u m b e r 

l iteral 

Figure 3.2: Examples of tokens 

1. One token for each keyword. The pat tern for a keyword is the same as 
the keyword itself. 

2. Tokens for the1 operators, either individually or in classes such as the token 
comparison rfientioned in Fig. 3.2. 

3. One token representing all identifiers. 

4. One or more tokens representing constants, such as numbers and literal 

5. Tokens for each punctuation symbol, such as left and right parentheses, 
comma, and semicolon. 

3.1.3 Attributes for Tokens 

When more than one lexeme can match a pat tern , the lexical analyzer must 
provide the subsequent compiler phases additional information about the par
ticular lexeme tha t matched. For example, the pa t tern for token n u m b e r 
matches both 0 and 1, but it is extremely important for the code generator to 
know which lexeme was found in the source program. Thus, in many cases the 
lexical analyzer returns to the parser not only a token name, but an a t t r ibute 
value tha t describes the lexeme represented by the token; the token name in
fluences parsing decisions, while the at t r ibute value influences translation of 
tokens after the parse. 

We shall assume tha t tokens have at most one associated at t r ibute , although 
this a t t r ibute may have a structure tha t combines several pieces of information. 
The most important example is the token id , where we need to associate with 
the token a great deal of information. Normally, information about an identi
fier — e.g., its lexeme, its type, and the location at which it is first found (in 
case an error message about tha t identifier must be issued) — is kept in the 
symbol table. Thus, the appropriate a t t r ibute value for an identifier is a pointer 
to the symbol-table entry for tha t identifier. 

strings. 
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Tricky Problems When Recognizing Tokens 

Usually, given the pat tern describing the lexemes of a token, it is relatively 
simple to recognize matching lexemes when they occur on the input. How
ever, in some languages it is not immediately apparent when we have seen 
an instance of a lexeme corresponding to a token. The following example 
is taken from Fortran, in the fixed-format still allowed in Fortran 90. In 
the statement 

DO 5 I = 1.25 

it is not apparent tha t the first lexeme is D05I, an instance of the identifier 
token, until we see the dot following the 1. Note tha t blanks in fixed-format 
Fortran are ignored (an archaic convention). Had we seen a comma instead 
of the dot, we would have had a do-statement 

DO 5 I = 1,25 

in which the first lexeme is the keyword DO. 

E x a m p l e 3 . 2 : The token names and associated a t t r ibute values for the For
t ran statement 

E = M * C ** 2 

are written below as a sequence of pairs. 

<id , pointer to symbol-table entry for E> 
<ass ign_op> 
< i d , pointer to symbol-table entry for M> 
< m u l t _ o p > 
< id , pointer to symbol-table entry for C> 
< e x p _ o p > 
< n u m b e r , integer value 2> 

Note tha t in certain pairs, especially operators, punctuation, and keywords, 
there is no need for an at t r ibute value. In this example, the token n u m b e r has 
been given an integer-valued at t r ibute . In practice, a typical compiler would 
instead store a character string representing the constant and use as an a t t r ibute 
value for n u m b e r a pointer to tha t string. • 

3.1.4 Lexical Errors 

It is hard for a lexical analyzer to tell, without the aid of other components, 
tha t there is a source-code error. For instance, if the string f i is encountered 
for the first time in a C program in the context: 
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f i ( a == f ( x ) ) . . . 

a lexical analyzer cannot tell whether f i is a misspelling of the keyword if or 
an undeclared function identifier. Since f i is a valid lexeme for the token id, 
the lexical analyzer must return the token id to the parser and let some other 
phase of the compiler — probably the parser in this case — handle an error 
due to transposition of the letters. 

However, suppose a situation arises in which the lexical analyzer is unable 
to proceed because none of the pat terns for tokens matches any prefix of the 
remaining input. The simplest recovery strategy is "panic mode" recovery. We 
delete successive characters from the remaining input, until the lexical analyzer 
can find a well-formed token at the beginning of what input is left. This recovery 
technique may confuse the parser, but in an interactive computing environment 
it may be quite adequate. 

Other possible error-recovery actions are: 

1. Delete one character from the remaining input. 

2. Insert a missing character into the remaining input. 

3. Replace a character by another character. 

4. Transpose two adjacent characters. 

Transformations like these may be tried in an a t tempt to repair the input. The 
simplest such strategy is to see whether a prefix of the remaining input can 
be transformed into a valid lexeme by a single transformation. This strategy 
makes sense, since in practice most lexical errors involve a single character. A 
more general correction strategy is to find the smallest number of transforma
tions needed to convert the source program into one tha t consists only of valid 
lexemes, but this approach is considered too expensive in practice to be worth 
the effort. 

3.1.5 Exercises for Section 3.1 

E x e r c i s e 3 . 1 . 1 : Divide the following C + + program: 

f l o a t l i m i t e d S q u a r e ( x ) f l o a t x { 
/ * r e t u r n s x - s q u a r e d , b u t n e v e r more t h a n 100 * / 
r e t u r n ( x < = - 1 0 . 0 | | x > = 1 0 . 0 ) ? 1 0 0 : x * x ; 

} 

into appropriate lexemes, using the discussion of Section 3.1.2 as a guide. Which 
lexemes should get associated lexical values? Wha t should those values be? 

! E x e r c i s e 3 . 1 . 2 : Tagged languages like HTML or XML are different from con
ventional programming languages in tha t the punctuation (tags) are either very 
numerous (as in HTML) or a user-definable set (as in XML). Further, tags can 
often have parameters . Suggest how to divide the following HTML document: 
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Here is a photo of <B>my house</B>: 

<PXIMG SRC = "house.gif"><BR> 

See <A HREF = "morePix.html">More Pictures</A> if you 

liked that one.<P> 

into appropriate lexemes. Which lexemes should get associated lexical values, 
and what should those values be? 

3.2 Input Buffering 

Before discussing the problem of recognizing lexemes in the input, let us examine 
some ways tha t the simple but important task of reading the source program 
can be speeded. This task is made difficult by the fact tha t we often have 
to look one or more characters beyond the next lexeme before we can be sure 
we have the right lexeme. The box on "Tricky Problems When Recognizing 
Tokens" in Section 3.1 gave an extreme example, but there are many situations 
where we need to look at least one additional character ahead. For instance, 
we cannot be sure we've seen the end of an identifier until we see a character 
tha t is not a letter or digit, and therefore is not part of the lexeme for id . In 
C, single-character operators like -, =, or < could also be the beginning of a 
two-character operator like ->, ==, or <=. Thus, we shall introduce a two-buffer 
scheme tha t handles large lookaheads safely. We then consider an improvement 
involving "sentinels" tha t saves time checking for the ends of buffers. 

3.2.1 Buffer Pairs 

Because of the amount of t ime taken to process characters and the large number 
of characters tha t must be processed during the compilation of a large source 
program, specialized buffering techniques have been developed to reduce the 
amount of overhead required to process a single input character. An impor
tant scheme involves two buffers tha t are alternately reloaded, as suggested in 
Fig. 3.3. 

E = M * C * * 2 eof 

t 
forward 

lexemeBegin 

Figure 3.3: Using a pair of input buffers 

Each buffer is of the same size N, and N is usually the size of a disk block, 
e.g., 4096 bytes. Using one system read command we can read N characters 
into a buffer, rather than using one system call per character. If fewer than N 
characters remain in the input file, then a special character, represented by eof, 
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marks the end of the source file and is different from any possible character of 
the source program. 

Two pointers to the input are maintained: 

1. Pointer lexemeBegin, marks the beginning of the current lexeme, whose 
extent we are a t tempting to determine. 

2. Pointer forward scans ahead until a pat tern match is found; the exact 
strategy whereby this determination is made will be covered in the balance 
of this chapter. 

Once the next lexeme is determined, forward is set to the character at its right 
end. Then, after the lexeme is recorded as an a t t r ibute value of a token returned 
to the parser, lexemeBegin is set to the character immediately after the lexeme 
just found. In Fig. 3.3, we see forward has passed the end of the next lexeme, 
** (the Fortran exponentiation operator) , and must be retracted one position 
to its left. 

Advancing forward requires tha t we first test whether we have reached the 
end of one of the buffers, and if so, we must reload the other buffer from the 
input, and move forward to the beginning of the newly loaded buffer. As long 
as we never need to look so far ahead of the actual lexeme tha t the sum of the 
lexeme's length plus the distance we look ahead is greater than N, we shall 
never overwrite the lexeme in its buffer before determining it. 

3.2.2 Sentinels 

If we use the scheme of Section 3.2.1 as described, we must check, each time we 
advance forward, tha t we have not moved off one of the buffers; if we do, then 
we must also reload the other buffer. Thus, for each character read, we make 
two tests: one for the end of the buffer, and one to determine what character 
is read (the latter may be a multiway branch). We can combine the buffer-end 
test with the test for the current character if we extend each buffer to hold a 
sentinel character at the end. The sentinel is a special character tha t cannot 
be par t of the source program, and a natural choice is the character eof. 

Figure 3.4 shows the same arrangement as Fig. 3.3, but with the sentinels 
added. Note tha t eo f retains its use as a marker for the end of the entire input. 
Any eof tha t appears other than at the end of a buffer means tha t the input 
is at an end. Figure 3.5 summarizes the algorithm for advancing forward. 
Notice how the first test, which can be part of a multiway branch based on the 
character pointed to by forward, is the only test we make, except in the case 
where we actually are at the end of a buffer or the end of the input. 

3.3 Specification of Tokens 
Regular expressions are an important notation for specifying lexeme pat terns . 
While they cannot express all possible pat terns, they are very effective in spec-



3.3. SPECIFICATION OF TOKENS 117 

Can We Run Out of Buffer Space? 

In most modern languages, lexemes are short, and one or two characters 
of lookahead is sufficient. Thus a buffer size N in the thousands is ample, 
and the double-buffer scheme of Section 3.2.1 works without problem. 
However, there are some risks. For example, if character strings can be 
very long, extending over many lines, then we could face the possibility 
tha t a lexeme is longer than N. To avoid problems with long character 
strings, we can t reat them as a concatenation of components, one from 
each line over which the string is written. For instance, in Java it is 
conventional to represent long strings by writing a piece on each line and 
concatenating pieces with a + operator at the end of each piece. 

A more difficult problem occurs when arbitrarily long lookahead may 
be needed. For example, some languages like P L / I do not t reat key
words as reserved; tha t is, you can use identifiers with the same name as 
a keyword like DECLARE. If the lexical analyzer is presented with text of a 
P L / I program tha t begins DECLARE ( ARG1, ARG2,... it cannot be sure 
whether DECLARE is a keyword, and ARG1 and so on are variables being de
clared, or whether DECLARE is a procedure name with its arguments. For 
this reason, modern languages tend to reserve their keywords. However, if 
not, one can t reat a keyword like DECLARE as an ambiguous identifier, and 
let the parser resolve the issue, perhaps in conjunction with symbol-table 
lookup. 

ifying those types of pat terns tha t we actually need for tokens. In this section 
we shall study the formal notation for regular expressions, and in Section 3.5 
we shall see how these expressions are used in a lexical-analyzer generator. 
Then, Section 3.7 shows how to build the lexical analyzer by converting regular 
expressions to au tomata tha t perform the recognition of the specified tokens. 

3.3.1 Strings and Languages 

An alphabet is any finite set of symbols. Typical examples of symbols are let
ters, digits, and punctuation. The set {0,1} is the binary alphabet. ASCII is an 
important example of an alphabet; it is used in many software systems. Uni-

E = M * eof C * * 2 eof eof 

| forward 
lexemeBegin 

Figure 3.4: Sentinels at the end of each buffer 
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swi tch ( *forward++ ) { 
case eof: 

if (forward is at end of first buffer ) { 
reload second buffer; 
forward = beginning of second buffer; 

} 
else if (forward is at end of second buffer ) { 

reload first buffer; 
forward = beginning of first buffer; 

} 
else /* eof within a buffer marks the end of input */ 

terminate lexical analysis; 
break; 

Cases for the other characters 

} 

Figure 3.5: Lookahead code with sentinels 

Implementing Multiway Branches 

We might imagine tha t the switch in Fig. 3.5 requires many steps to exe
cute, and tha t placing the case eof first is not a wise choice. Actually, it 
doesn't mat ter in what order we list the cases for each character. In prac
tice, a multiway branch depending on the input character is be made in 
one step by jumping to an address found in an array of addresses, indexed 
by characters. 

code, which includes approximately 100,000 characters from alphabets around 
the world, is another important example of an alphabet. 

A string over an alphabet is a finite sequence of symbols drawn from tha t 
alphabet. In language theory, the terms "sentence" and "word" are often used 
as synonyms for "string." The length of a string s, usually written |s | , is the 
number of occurrences of symbols in s. For example, banana is a string of 
length six. The empty string, denoted e, is the string of length zero. 

A language is any countable set of strings over some fixed alphabet. This 
definition is very broad. Abstract languages like 0, the empty set, or {e}, the 
set containing only the empty string, are languages under this definition. So 
too are the set of all syntactically well-formed C programs and the set of all 
grammatically correct English sentences, although the latter two languages are 
difficult to specify exactly. Note tha t the definition of "language" does not 
require tha t any meaning be ascribed to the strings in the language. Methods 
for defining the "meaning" of strings are discussed in Chapter 5. 
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Terms for Parts of Strings 

The following string-related terms are commonly used: 

1. A prefix of string s is any string obtained by removing zero or more 
symbols from the end of s. For example, ban, banana, and e are 
prefixes of banana. 

2. A suffix of string s is any string obtained by removing zero or more 
symbols from the beginning of s. For example, nana, banana, and e 
are suffixes of banana. 

3. A substring of s is obtained by deleting any prefix and any suffix 
from s. For instance, banana, nan, and e are substrings of banana. 

4. The proper prefixes, suffixes, and substrings of a string s are those, 
prefixes, suffixes, and substrings, respectively, of s tha t are not e or 
not equal to s itself. 

5. A subsequence of s is any string formed by deleting zero or more 
not necessarily consecutive positions of s. For example, baan is a 
subsequence of banana. 

If x and y are strings, then the concatenation of x and y, denoted xy, is the 
string formed by appending y to x. For example, if x = dog and y = house , 
then xy — doghouse. The empty string is the identity under concatenation; 
tha t is, for any string s, es = se — s. 

If we think of concatenation as a product, we can define the "exponentiation" 
of strings as follows. Define s° to be e, and for all i > 0, define s l to be st~1s. 
Since es = s, it follows tha t s1 = s. Then s2 = ss, s3 = sss, and so on. 

3.3.2 Operations on Languages 

In lexical analysis, the most important operations on languages are union, con
catenation, and closure, which are defined formally in Fig. 3.6. Union is the 
familiar operation on sets. The concatenation of languages is all strings formed 
by taking a string from the first language and a string from the second lan
guage, in all possible ways, and concatenating them. The (Kleene) closure of a 
language L, denoted L*, is the set of strings you get by concatenating L zero 
or more times. Note tha t L°, the "concatenation of L zero times," is defined to 
be {e}, and inductively, U is Ll~1L. Finally, the positive closure, denoted L+, 
is the same as the Kleene closure, but without the te rm L°. T h a t is, e will not 
be in L+ unless it is in L itself. 
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O P E R A T I O N , D E F I N I T I O N A N D N O T A T I O N 

Union of L and M L U M = {s | s is in L or s is in M } 

Concatenation of L and M L M = {si | s is in L and t is in M } 

Kleene closure of L L * = U £ 0 

Positive closure of L 

Figure 3.6: Definitions of operations on languages 

E x a m p l e 3 .3 i Let L be the set of letters {A, B , . . . , Z, a, b , . . . , z} and let D 
be the set of digits { 0 , 1 , . . . 9} . We may think of L and D in two, essentially 
equivalent, ways. One way is tha t L and D are, respectively, the alphabets of 
uppercase and lowercase letters and of digits. The second way is tha t L and D 
are languages, all of whose strings happen to be of length one. Here are some 
other languages tha t can be constructed from languages L and D, using the 
operators of Fig. 3.6: 

1. L U D is the set of letters and digits — strictly speaking the language 
with 62 strings of length one, each of which strings is either one letter or 
one digit. 

2. LD is the set c-f 520 strings of length two, each consisting of one letter 

followed by one digit. 

3. L 4 is the set of all 4-letter strings. 

4. L* is the set of all strings of letters, including e, the empty string. 

5. L(L U D)* is the set of all strings of letters and digits beginning with a 

letter. 

6. D+ is the set of all strings of one or more digits. 

• 

3.3.3 Regular Expressions 

Suppose we wanted to describe the set of valid C identifiers. It is almost ex
actly the language described in item (5) above; the only difference is tha t the 
underscore is included among the letters. 

In Example 3.3, we were able to describe identifiers by giving names to sets 
of letters and digits and using the language operators union, concatenation, 
and closure. This process is so useful tha t a notation called regular expressions 
has come into common use for describing all the languages tha t can be built 
from these operators applied to the symbols of some alphabet. In this notation, 
if letter- is established to stand for any letter or the underscore, and digit- is 
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established to stand for any digit, then we could describe the language of C 

identifiers by: 

letter- ( letter- \ digit )* 

The vertical bar above means union, the parentheses are used to group subex
pressions, the star means "zero or more occurrences of," and the juxtaposition 
of letter, with the remainder of the expression signifies concatenation. 

The regular expressions are built recursively out of smaller regular expres
sions, using the rules described below. Each regular expression r denotes a 
language L(r), which is also defined recursively from the languages denoted by 
r ' s subexpressions. Here are the rules tha t define the regular expressions over 
some alphabet £ and the languages tha t those expressions denote. 

BASIS: There are two rules tha t form the basis: 

1. e is a regular expression, and L(e) is {e}, tha t is, the language whose sole 
member is the empty string. 

2. If a is a symbol in E, then a is a regular expression, and L(a) = {a}, tha t 
is, the language with one string, of length one, with a in its one position. 
Note tha t by convention, we use italics for symbols, and boldface for their 
corresponding regular expression. 1 

I N D U C T I O N : There are four parts to the induction whereby larger regular 
expressions are built from smaller ones. Suppose r and s are regular expressions 
denoting languages L(r) and L(s), respectively. 

1. (r) | (s) is a regular expression denoting the language L(r) U L(s). 

2. (r)(s) is a regular expression denoting the language L(r)L(s). 

3. (r)* is a regular expression denoting (L(r))*. 

4. (r) is a regular expression denoting L(r). This last rule says tha t we can 
add additional pairs of parentheses around expressions without changing 
the language they denote. 

As defined, regular expressions often contain unnecessary pairs of paren
theses. We may drop certain pairs of parentheses if we adopt the conventions 
that : 

a) The unary operator * has highest precedence and is left associative. 

b) Concatenation has second highest precedence and is left associative. 

however , when talking about specific characters from the ASCII character set, we shall 
generally use teletype font for both the character and its regular expression. 
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c) | has lowest precedence and is left associative. 

Under these conventions, for example, we may replace the regular expression 
(a)|((b)*(c)) by a|b*c. Both expressions denote the set of strings tha t are either 
a single a or are zero or more 6's followed by one c. 

E x a m p l e 3 . 4 : Let £ = {a, 6}. 

1. The regular expression a|b denotes the language {a, b}. 

2. (a|b)(a|b) denotes {aa, ah, ba, bb}, the language of all strings of length two 
over the alphabet E. Another regular expression for the same language is 
aa |ab |ba |bb. 

3. a* denotes the language consisting of all strings of zero or more a's, tha t 
is, { e , a , a a , a a a , . . . } . 

4. (a|b)* denotes the set of all strings consisting of zero or more instances 
of a or b, tha t is, all strings of a's and 6's: {e,a, b,aa, ab, ba, bb,aaa,...}. 
Another regular expression for the same language is (a*b*)*. 

5. a|a*b denotes the language {a, b, ab, aab, aaab,...}, tha t is, the string a 
and all strings consisting of zero or more a's and ending in b. 

• 

A language tha t can be defined by a regular expression is called a regular 
set. If two regular expressions r and s denote the same regular set, we say they 
are equivalent and write r = s. For instance, (a|b) = (b|a). There are a number 
of algebraic laws for regular expressions; each law asserts tha t expressions of 
two different forms are equivalent. Figure 3.7 shows some of the algebraic laws 
tha t hold for arbitrary regular expressions r, s, and t. 

L A W D E S C R I P T I O N 

r\s = s\r | is commutative 

r\(s\t) = (r\s)\t | is associative 

r(st) = (rs)t Concatenation is associative 

r(s\t) = rs\rt; (s\t)r = sr\tr Concatenation distributes over | 

er = re = r e is the identity for concatenation 

r* = (r|e)* e is guaranteed in a closure 

* is idempotent 

Figure 3.7: Algebraic laws for regular expressions 
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3.3.4 Regular Definitions 

For notational convenience, we may wish to give names to certain regular ex
pressions and use those names in subsequent expressions, as if the names were 
themselves symbols. If £ is an alphabet of basic symbols, then a regular defi
nition is a sequence of definitions of the form: 

di -> n 
d2 -» r 2 

dn ^ rn 

where: 

1. Each di is a new symbol, not in E and not the same as any other of the 

cTs, and 

2. Each T{ is a regular expression over the alphabet E U {d\,d2,.. . , 

By restricting to E and the previously defined G T S , we avoid recursive defini
tions, and we can construct a regular expression over E alone, for each r$. We 
do so by first replacing uses of d\ in r2 (which cannot use any of the d's except 
for d\), then replacing uses of d\ and d2 in r-$ by r\ and (the substituted) r2, 
and so on. Finally, in rn we replace each di, for i — 1 ,2 , . . . ,n — 1, by the 
substi tuted version of r$, each of which has only symbols of E. 

E x a m p l e 3 . 5 : C identifiers are strings of letters, digits, and underscores. Here 
is a regular definition for the language of C identifiers. We shall conventionally 
use italics for the symbols defined in regular definitions. 

letter- -+ A | B | - - - | Z | a | b | - - - | z | _ 
digit -> 0 j 1 j • • • j 9 

id —)• letter- ( letter- \ digit )* 

E x a m p l e 3 . 6 : Unsigned numbers (integer or floating point) are strings such 
as 5280, 0 .01234, 6.336E4, or 1.89E-4. The regular definition 

digit 0 | 1 9 
digits -+ digit digit* 

optionalFraction - ) • . digits | e 
optionalExponent ( E ( + | - | e ) digits ) | e 

number -> digits optionalFraction optionalExponent 

is a precise specification for this set of strings. Tha t is, an optionalFraction is 
either a decimal point (dot) followed by one or more digits, or it is missing (the 
empty string). An optionalExponent, if not missing, is the letter E followed by 
an optional + or - sign, followed by one or more digits. Note tha t at least one 
digit must follow the dot, so number does not match 1., but does match 1.0. 
• 
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3.3.5 Extensions of Regular Expressions 

Since Kleene introduced regular expressions with the basic operators for union, 
concatenation, and Kleene closure in the 1950s, many extensions have been 
added to regular expressions to enhance their ability to specify string pat terns . 
Here we mention a few notational extensions tha t were first incorporated into 
Unix utilities such as Lex tha t are particularly useful in the specification lexical 
analyzers. The references to this chapter contain a discussion of some regular-
expression variants in use today. 

1. One or more instances. The unary, postfix operator + represents the 
positive closure of a regular expression and its language. Tha t is, if r is a 
regular expression, then ( r ) + denotes the language (L(r)) + . The operator 
+ has the same precedence and associativity as the operator *. Two useful 
algebraic laws, r* = r+\e and r+ = rr* = r*r relate the Kleene closure 
and positive closure. 

2. Zero or one instance. The unary postfix operator ? means "zero or one 
occurrence." Tha t is, r? is equivalent to r |e , or put another way, L(r?) = 

L(r) U {e}. The ? operator has the same precedence and associativity as 
* and + . 

3. Character classes. A regular expression aifal • • • \an, where the a^s 
are each symbols of the alphabet, can be replaced by the shorthand 
[aia,2 • • - an]. More importantly, when 0 1 , 0 2 , . . . , a n f ° r m a logical se
quence, e.g., consecutive uppercase letters, lowercase letters, or digits, we 
can replace them by o i - a n , tha t is, just the first and last separated by 
a hyphen. Thus, [abc] is shorthand for a|b|c, and [a-z] is shorthand for 
a | b | . - - | z . 

E x a m p l e 3 . 7 : Using these shorthands, we can rewrite the regular definition 

of Example 3.5 as: 

letter. -> [A-Za-z_] 
digit -> [0-9] 

id -> letter- ( letter \ digit )* 

The regular definition of Example 3.6 can also be simplified: 

digit -> [0-9] 
digits —>• digit+ 

number -»• digits (. digits)? ( E [+-]? digits )? 

• 
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3.3.6 Exercises for Section 3.3 

Exerc i se 3 . 3 . 1 : Consult the language reference manuals to determine (i) the 
sets of characters tha t form the input alphabet (excluding those tha t may only 
appear in character strings or comments), (ii) the lexical form of numerical 
constants, and (Hi) the lexical form of identifiers, for each of the following 
languages: (a) C (b) C + + (c) C# (d) Fortran (e) Java (f) Lisp (g) SQL. 

! Exerc i se 3 . 3 . 2 : Describe the languages denoted by the following regular ex

pressions: 

a) a(a|b)*a. 

b) ((e |a)b*)*. 

c) (a |b)*a(a|b)(a|b). 

d) a*ba*ba*ba*. 

!! e) (aa|bb)*((ab|ba)(aa|bb)*(ab|ba)(aa|bb)*)*. 

Exerc i se 3 . 3 . 3 : In a string of length n, how many of the following are there? 

a) Prefixes. 

b) Suffixes. 

c) Proper prefixes. 

! d) Substrings. 

! e) Subsequences. 

Exerc i se 3 . 3 . 4 : Most languages are case sensitive, so keywords can be written 
only one way, and the regular expressions describing their lexeme is very simple. 
However, some languages, like SQL, are case insensitive, so a keyword can be 
writ ten either in lowercase or in uppercase, or in any mixture of cases. Thus, 
the SQL keyword SELECT can also be written s e l e c t , S e l e c t , or sElEcT, for 
instance. Show how to write a regular expression for a keyword in a case-
insensitive language. Illustrate the idea by writing the expression for "select" 
in SQL. 

! Exerc i se 3 . 3 . 5 : Write regular definitions for the following languages: 

a) All strings of lowercase letters tha t contain the five vowels in order. 

b) All strings of lowercase letters in which the letters are in ascending lexi
cographic order. 

c) Comments, consisting of a string surrounded by /* and * / , without an 
intervening * / , unless it is inside double-quotes ("). 
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!! d) All strings of digits with no repeated digits. Hint: Try this problem first 
with a few digits, such as {0 ,1 ,2} . 

!! e) All strings of digits with at most one repeated digit. 

!! f) All strings of a's and 6's with an even number of a's and an odd number 
of 6 's. 

g) The set of Chess moves, in the informal notation, such as p - k 4 or kbpxqn . 

!! h) All strings of a's and 6's tha t do not contain the substring a66. 

i) All strings of a's and 6's tha t do not contain the subsequence a66. 

E x e r c i s e 3 . 3 . 6 : Write character classes for the following sets of characters: 

a) The first ten letters (up to "j") in either upper or lower case. 

b) The lowercase consonants. 

c) The "digits" in a hexadecimal number (choose either upper or lower case 
for the "digits" above 9 ) . 

d) The characters tha t can appear at the end of a legitimate English sentence 
(e.g., exclamation point) . 

The following exercises, up to and including Exercise 3.3.10, discuss the 
extended regular-expression notation from Lex (the lexical-analyzer generator 
tha t we shall discuss extensively in Section 3.5). The extended notat ion is listed 
in Fig. 3.8. 

E x e r c i s e 3 . 3 . 7 : Note that these regular expressions give all of the following 
symbols (operator characters) a special meaning: 

\ » . ~ $ [ ] * + ? { } I / 

Their special meaning must be turned off if they are needed to represent them
selves in a character string. We can do so by quoting the character within a 
string of length one or more; e.g., the regular expression "**" matches the string 
**. We can also get the literal meaning of an operator character by preceding 
it by a backslash. Thus, the regular expression \ * \ * also matches the string 
**. Write a regular expression tha t matches the string " \ . 

E x e r c i s e 3 . 3 . 8 : In Lex, a complemented character class represents any char
acter except the ones listed in the character class. We denote a complemented 
class by using " as the first character; this symbol (caret) is not itself par t of 
the class being complemented, unless it is listed within the class itself. Thus, 
[~A-Za-z] matches any character tha t is not an uppercase or lowercase letter, 
and [~\~] represents any character but the caret (or newline, since newline 
cannot be in any character class). Show tha t for every regular expression with 
complemented character classes, there is an equivalent regular expression with
out complemented character classes. 
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E X P R E S S I O N M A T C H E S E X A M P L E 

c the one non-operator character c a 

V character c literally \* 
l lg l l string s literally "**" 

any character but newline a. *b 

beginning of a line ~abc 

$ end of a line abc$ 

[*] 
any one of the characters in string s [abc] 

any one character not in string s [~abc] 

r* zero or more strings matching r a* 

r + one or more strings matching r a+ 

r? zero or one r a? 

r{m, n} between m and n occurrences of r a [ l , 5 ] 

rir2 
an ?*i followed by an r2 ab 

r\ | r2 
an r i or an r2 a | b 

(r) same as r ( a l b ) 

ri/r2 
7*1 when followed by r2 abc / 123 

Figure 3.8: Lex regular expressions 

! Exerc i se 3 . 3 . 9 : The regular expression r{m, n] matches from m to n occur
rences of the pat tern r. For example, a [ 1 , 5 ] matches a string of one to five a's. 
Show tha t for every regular expression containing repetition operators of this 
form, there is an equivalent regular expression without repetition operators. 

! Exerc i se 3 . 3 . 1 0 : The operator " matches the left end of a line, and $ matches 
the right end of a line. The operator " is also used to introduce complemented 
character classes, but the context always makes it clear which meaning is in
tended. For example, ~ [~ae iou]*$ matches any complete line tha t does not 
contain a lowercase vowel. 

a) How do you tell which meaning of A is intended? 

b) Can you always replace a regular expression using the " and $ operators 
by an equivalent expression tha t does not use either of these operators? 

! Exerc i se 3 . 3 . 1 1 : The UNIX shell command sh uses the operators in Fig. 3.9 
in filename expressions to describe sets of file names. For example, the filename 
expression * . o matches all file names ending in .o; s o r t l . ? matches all file
names of the form s o r t . c, where c is any character. Show how sh filename 
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E X P R E S S I O N M A T C H E S E X A M P L E 

V string s literally ' V 

V character c literally V 

* any string *. o 

? any character s o r t l . ? 

[s] any character in s s o r t l . [ c s o ] 

Figure 3.9: Filename expressions used by the shell command sh 

expressions can be replaced by equivalent regular expressions using only the 
basic union, concatenation, and closure operators. 

! Exerc i se 3 . 3 . 1 2 : SQL allows a rudimentary form of pat terns in which two 
characters have special meaning: underscore (_) stands for any one character 
and percent-sign (%) stands for any string of 0 or more characters. In addition, 
the programmer may define any character, say e, to be the escape character, so 
e preceding an e preceding _, % or another e gives the character tha t follows its 
literal meaning. Show how to express any SQL pat tern as a regular expression, 
given tha t we know which character is the escape character. 

3.4 Recognition of Tokens 

In the previous section we learned how to express pat terns using regular expres
sions. Now, we must study how to take the pat terns for all the needed tokens 
and build a piece of code tha t examines the input string and finds a prefix tha t 
is a lexeme matching one of the pat terns . Our discussion will make use of the 
following running example. 

stmt —>• if expr t h e n stmt 

| if expr t h e n stmt e l se stmt 

I e 
expr —»• term re lop term 

| term 
term -> id 

| n u m b e r 

Figure 3.10: A grammar for branching statements 

E x a m p l e 3 . 8 : The grammar fragment of Fig. 3.10 describes a simple form 
of branching statements and conditional expressions. This syntax is similar to 
tha t of the language Pascal, in tha t t h e n appears explicitly after conditions. 
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For re lop, we use the comparison operators of languages like Pascal or SQL, 
where = is "equals" and <> is "not equals," because it presents an interesting 
structure of lexemes. 

The terminals of the grammar, which are if, t h e n , else, re lop, id, and 
number , are the names of tokens as far as the lexical analyzer is concerned. The 
pat terns for these tokens are described using regular definitions, as in Fig. 3.11. 
The pat terns for id and number are similar to what we saw in Example 3.7. 

digit -> [0-9] 
digits digit+ 

number digits (. digits)? ( E [+-]? digits )? 
letter [A-Za-z] 

id letter ( letter \ digit )* 

if -> i f 
then then 
else e l s e 

relop < 1 > 1 <= 1 >= 1 = 1 <> 

Figure 3.11: Pat terns for tokens of Example 3.8 

For this language, the lexical analyzer will recognize the keywords if , then, 
and e l s e , as well as lexemes tha t match the pat terns for relop, id, and number. 
To simplify mat ters , we make the common assumption tha t keywords are also 
reserved words: t h a t is, they are not identifiers, even though their lexemes 
match the pat tern for identifiers. 

In addition, we assign the lexical analyzer the job of stripping out white-
space, by recognizing the "token" ws defined by: 

ws -» ( blank | t ab j newl ine ) + 

Here, blank, tab , and newl ine are abstract symbols tha t we use to express 
the ASCII characters of the same names. Token ws is different from the other 
tokens in that , when we recognize it, we do not return it to the parser, but rather 
restart the lexical analysis from the character tha t follows the whitespace. It is 
the following token tha t gets returned to the parser. 

Our goal for the lexical analyzer is summarized in Fig. 3.12. Tha t table 
shows, for each lexeme or family of lexemes, which token name is returned to 
the parser and what a t t r ibute value, as discussed in Section 3.1.3, is returned. 
Note tha t for the six relational operators, symbolic constants LT, LE, and so 
on are used as the a t t r ibute value, in order to indicate which instance of the 
token re lop we have found. The particular operator found will influence the 
code tha t is output from the compiler. • 
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L E X E M E S T O K E N N A M E A T T R I B U T E V A L U E 

Any ws - -
i f if -

then t h e n -
e l s e e lse -

Any id id Pointer to table entry 
Any number n u m b e r Pointer to table entry 

< relop LT 

<= re lop LE 

= re lop EQ 

<> relop NE 

> re lop GT 

>= re lop 

Figure 3.12: Tokens, their pat terns, and at t r ibute values 

3.4.1 Transition Diagrams 

As an intermediate step in the construction of a lexical analyzer, we first convert 
pat terns into stylized flowcharts, called "transition diagrams." In this section, 
we perform the conversion from regular-expression pat terns to transition dia
grams by hand, but in Section 3.6, we shall see tha t there is a mechanical way 
to construct these diagrams from collections of regular expressions. 

Transition diagrams have a collection of nodes or circles, called states. Each 
state represents a condition tha t could occur during the process of scanning 
the input looking for a lexeme tha t matches one of several pat terns . We may 
think of a s tate as summarizing all we need to know about what characters we 
have seen between the lexemeBegin pointer and the forward pointer (as in the 
situation of Fig. 3.3). 

Edges are directed from one state of the transition diagram to another. 
Each edge is labeled by a symbol or set of symbols. If we are in some state 
5, and the next input symbol is a, we look for an edge out of s ta te s labeled 
by a (and perhaps by other symbols, as well). If we find such an edge, we 
advance the forward pointer arid enter the state of the transition diagram to 
which tha t edge leads. We shall assume tha t all our transition diagrams are 
deterministic, meaning tha t there is never more than one edge out of a given 
state with a given symbol among its labels. Starting in Section 3.5, we shall 
relax the condition of determinism, making life much easier for the designer 
of a lexical analyzer, although trickier for the implementer. Some important 
conventions about transition diagrams are: 

1. Certain states are said to be accepting, or final. These states indicate tha t 
a lexeme has been found, although the actual lexeme may not consist of 
all positions between the lexemeBegin and forward pointers. We always 
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indicate an accepting state by a double circle, and if there is an action 
to be taken — typically returning a token and an a t t r ibute value to the 
parser — we shall a t tach tha t action to the accepting state. 

2. In addition, if it is necessary to retract the forward pointer one position 
(i.e., the lexeme does not include the symbol tha t got us to the accepting 
state) , then we shall additionally place a * near tha t accepting state. In 
our example, it is never necessary to retract forward by more than one 
position, but if it were, we could at tach any number of *'s to the accepting 
state. 

3. One state is designated the start state, or initial state; it is indicated by 
an edge, labeled "start," entering from nowhere. The transition diagram 
always begins in the start state before any input symbols have been read. 

E x a m p l e 3 . 9 : Figure 3.13 is a transition diagram tha t recognizes the lexemes 
matching the token re lop. We begin in state 0, the start state. If we see < as the 
first input symbol, then among the lexemes tha t match the pat tern for re lop 
we can only be looking at <, <>, or <=. We therefore go to state 1, and look at 
the next character. If it is =, then we recognize lexeme <=, enter state 2, and 
return the token re lop with a t t r ibute LE, the symbolic constant representing 
this particular comparison operator. If in state 1 the next character is >, then 
instead we have lexeme <>, and enter s tate 3 to return an indication tha t the 
not-equals operator has been found. On any other character, the lexeme is <, 
and we enter state 4 to return tha t information. Note, however, tha t state 4 
has a * to indicate tha t we must retract the input one position. 

On the other hand, if in s tate 0 the first character we see is =, then this one 
character must be the lexeme. We immediately return tha t fact from state 5. 

Figure 3.13: Transition diagram for re lop 
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The remaining possibility is tha t the first character is >. Then, we must enter 
s tate 6 and decide, on the basis of the next character, whether the lexeme is >= 
(if we next see the = sign), or just > (on any other character). Note tha t if, in 
s ta te 0, we see any character besides <, =, or >, we can not possibly be seeing 
a r e l o p lexeme, so this transition diagram will not be used. • 

3.4.2 Recognition of Reserved Words and Identifiers 

Recognizing keywords and identifiers presents a problem. Usually, keywords like 
if or then are reserved (as they are in our running example), so they are not 
identifiers even though they look like identifiers. Thus, although we typically 
use a transition diagram like tha t of Fig. 3.14 to search for identifier lexemes, 
this diagram will also recognize the keywords if , then, and e l s e of our running 
example. 

letter or digit 

start letter C^) other /̂ zx * 
*\9J *\10) K®) return(getToken(), installlD ()) 

Figure 3.14: A transition diagram for id ' s and keywords 

There are two ways tha t we can handle reserved words tha t look like iden
tifiers: 

1. Install the reserved words in the symbol table initially. A field of the 
symbol-table entry indicates tha t these strings are never ordinary identi
fiers, and tells which token they represent. We have supposed tha t this 
method is in use in Fig. 3.14. When we find an identifier, a call to installlD 
places it in the symbol table if it is not already there and returns a pointer 
to the symbol-table entry for the lexeme found. Of course, any identifier 
not in the symbol table during lexical analysis cannot be a reserved word, 
so its token is id. The function getToken examines the symbol table entry 
for the lexeme found, and returns whatever token name the symbol table 
says this lexeme represents — either id or one of the keyword tokens tha t 
was initially installed in the table. 

2. Create separate transition diagrams for each keyword; an example for 
the keyword then is shown in Fig. 3.15. Note tha t such a transit ion 
diagram consists of states representing the situation after each successive 
letter of the keyword is seen, followed by a test for a "nonletter-or-digit," 
i.e., any character tha t cannot be the continuation of an identifier. It is 
necessary to check tha t the identifier has ended, or else we would return 
token t h e n in situations where the correct token was id, with a lexeme 
like t h e n e x t v a l u e tha t has then as a proper prefix. If we adopt this 
approach, then we must prioritize the tokens so tha t the reserved-word 
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tokens are recognized in preference to id, when the lexeme matches both 
pat terns . We do not use this approach in our example, which is why the 
states in Fig. 3.15 are unnumbered. 

Figure 3.15: Hypothetical transition diagram for the keyword t h e n 

3.4.3 Completion of the Running Example 

The transition diagram for id ' s tha t we saw in Fig. 3.14 has a simple structure. 
Start ing in state 9, it checks tha t the lexeme begins with a letter and goes to 
state 10 if so. We stay in state 10 as long as the input contains letters and digits. 
When we first encounter anything but a letter or digit, we go to state 11 and 
accept the lexeme found. Since the last character is not part of the identifier, 
we must retract the input one position, and as discussed in Section 3.4.2, we 
enter what we have found in the symbol table and determine whether we have 
a keyword or a t rue identifier. 

The transition diagram for token n u m b e r is shown in Fig. 3.16, and is so 
far the most complex diagram we have seen. Beginning in state 12, if we see a 
digit, we go to state 13. In tha t state, we can read any number of additional 
digits. However, if we see anything but a digit or a dot, we have seen a number 
in the form of an integer; 123 is an example. Tha t case is handled by entering 
state 20, where we return token n u m b e r and a pointer to a table of constants 
where the found lexeme is entered. These mechanics are not shown on the 
diagram but are analogous to the way we handled identifiers. 

digit digit digit 

start 

Figure 3.16: A transition diagram for unsigned numbers 

If we instead see a dot in state 13, then we have an "optional fraction." 
State 14 is entered, and we look for one or more additional digits; s tate 15 is 
used for tha t purpose. If we see an E, then we have an "optional exponent," 
whose recognition is the job of states 16 through 19. Should we, in s tate 15, 
instead see anything bu t E or a digit, then we have come to the end of the 
fraction, there is no exponent, and we return the lexeme found, via s tate 21. 
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The final transition diagram, shown in Fig. 3.17, is for whitespace. In tha t 
diagram, we look for one or more "whitespace" characters, represented by d e l i m 
in tha t diagram — typically these characters would be blank, t ab , newline, and 
perhaps other characters tha t are not considered by the language design to be 
part of any token. 

Note tha t in state 24, we have found a block of consecutive whitespace 
characters, followed by a nonwhitespace character. We retract the input to 
begin at the nonwhitespace, but we do not return to the parser. Rather , we 
must restart the process of lexical analysis after the whitespace. 

3.4.4 Architecture of a Transition-Diagram-Based Lexical 
Analyzer 

There are several ways tha t a collection of transition diagrams can be used 
to build a lexical analyzer. Regardless of the overall strategy, each state is 
represented by a piece of code. We may imagine a variable s t a t e holding the 
number of the current s ta te for a transition diagram. A switch based on the 
value of s t a t e takes us to code for each of the possible states, where we find 
the action of tha t state. Often, the code for a s tate is itself a switch statement 
or multiway branch tha t determines the next state by reading and examining 
the next input character. 

E x a m p l e 3 . 1 0 : In Fig. 3.18 we see a sketch of g e t R e l o p O , a C + + function 
whose job is to simulate the transition diagram of Fig. 3.13 and return an object 
of type TOKEN, tha t is, a pair consisting of the token name (which must be re lop 
in this case) and an a t t r ibute value (the code for one of the six comparison 
operators in this case). g e t R e l o p O first creates a new object r e t Token and 
initializes its first component to RELOP, the symbolic code for token re lop. 

We see the typical behavior of a s tate in case 0, the case where the current 
s tate is 0. A function n e x t C h a r ( ) obtains the next character from the input 
and assigns it to local variable c. We then check c for the three characters we 
expect to find, making the s ta te transition dictated by the transit ion diagram 
of Fig. 3.13 in each case. For example, if the next input character is =, we go 
to state 5. 

If the next input character is not one tha t can begin a comparison operator, 
then a function f a i l () is called. Wha t f a i l () does depends on the global error-
recovery strategy of the lexical analyzer. It should reset the fo rward pointer 
to lexemeBegin, in order to allow another transition diagram to be applied to 

delim 

Figure 3.17: A transition diagram for whitespace 
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TOKEN getRelopO 

{ 

TOKEN retToken = new(RELOP); 

while(1) { /* repeat character processing until a return 

or failure occurs */ 

switch(state) { 

case 0: c = nextCharQ; 

if ( c == '<» ) state = 1; 

else if ( c == '=' ) state = 5; 

else if ( c == '>' ) state - 6; 

else fail(); /* lexeme is not a relop */ 

break; 

case 1: ... 

case 8: retract(); 

retToken.attribute = GT; 

return(retToken); 

Figure 3.18: Sketch of implementation of relop transition diagram 

the t rue beginning of the unprocessed input. It might then change the value 
of state to be the s tar t s ta te for another transition diagram, which will search 
for another token. Alternatively, if there is no other transition diagram tha t 
remains unused, fail() could initiate an error-correction phase tha t will t ry 
to repair the input and find a lexeme, as discussed in Section 3.1.4. 

We also show the action for state 8 in Fig. 3.18. Because state 8 bears a *, 
we must retract the input pointer one position (i.e., put c back on the input 
s tream). Tha t task is accomplished by the function retract ( ) . Since state 8 
represents the recognition of lexeme >=, we set the second component of the 
returned object, which we suppose is named attribute, to GT, the code for this 
operator. • 

To place the simulation of one transition diagram in perspective, let us 
consider the ways code like Fig. 3.18 could fit into the entire lexical analyzer. 

1. We could arrange for the transition diagrams for each token to be tried se
quentially. Then, the function f ail() of Example 3.10 resets the pointer 
forward and starts the next transit ion diagram, each t ime it is called. 
This method allows us to use transition diagrams for the individual key
words, like the one suggested in Fig. 3.15. We have oniy to use these 
before we use the diagram for id, in order for the keywords to be reserved 
words. 
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2. We could run the various transition diagrams "in parallel," feeding the 
next input character to all of them and allowing each one to make what
ever transitions it required. If we use this strategy, we must be careful 
to resolve the case where one diagram finds a lexeme that matches its 
pat tern, while one or more other diagrams are still able to process input. 
The normal strategy is to take the longest prefix of the input tha t matches 
any pat tern. Tha t rule allows us to prefer identifier t h e n e x t to keyword 
t h e n , or the operator -> to -, for example. 

3. The preferred approach, and the one we shall take up in the following 
sections, is to combine all the transition diagrams into one. We allow the 
transition diagram to read input until there is no possible next state, and 
then take the longest lexeme tha t matched any pat tern , as we discussed 
in item (2) above. In our running example, this combination is easy, 
because no two tokens can start with the same character; i.e., the first 
character immediately tells us which token we are looking for. Thus, we 
could simply combine states 0, 9, 12, and 22 into one start s tate, leaving 
other transitions intact. However, in general, the problem of combining 
transition diagrams for several tokens is more complex, as we shall see 
shortly. 

3.4.5 Exercises for Section 3.4 

E x e r c i s e 3 . 4 . 1 : Provide transition diagrams to recognize the same languages 
as each of the regular expressions in Exercise 3.3.2. 

E x e r c i s e 3 . 4 . 2 : Provide transition diagrams to recognize the same languages 
as each of the regular expressions in Exercise 3.3.5. 

The following exercises, up to Exercise 3.4.12, introduce the Aho-Corasick 
algorithm for recognizing a collection of keywords in a text string in t ime pro
portional to the length of the text and the sum of the length of the keywords. 
This algorithm uses a special form of transition diagram called a trie. A trie is 
a tree-structured transition diagram with distinct labels on the edges leading 
from a node to its children. Leaves of the trie represent recognized keywords. 

Knuth, Morris, and P ra t t presented an algorithm for recognizing a single 
keyword &i&2 • • • K in a text string. Here the trie is a transition diagram with 
n states, 0 through n. State 0 is the initial state, and s tate n represents ac
ceptance, tha t is, discovery of the keyword. From each state s from 0 through 
n - 1, there is a transition to state s + 1, labeled by symbol ba+i. For example, 
the trie for the keyword ababaa is: 

a b ^ a ^ b _ a a 

®—KD—-®—Ki>—®—-d>-
In order to process text strings rapidly and search those strings for a key

word, it is useful to define, for keyword &i&2 • • • &n and position s in t ha t keyword 
(corresponding to state s of its trie), a failure function, f(s), computed as in 
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Fig. 3.19. The objective is tha t &i&2 -" •&/(*) l s the longest proper prefix of 
&1&2 • • • bs tha t is also a suffix of b\b2 • • • bs. The reason f(s) is important is tha t 
if we are trying to match a text string for 61&2 • • • bn, and we have matched the 
first s positions, but we then fail (i.e., the next position of the text string does 
not hold bs+i), then f(s) is the longest prefix of &1&2 • * • bn tha t could possibly 
match the text string up to the point we are at. Of course, the next character of 
the text string must be &/( s)+i, or else we still have problems and must consider 
a yet shorter prefix, which will be &/(/( s)). 

1) t = 0; 

2) /(1)=0; 

3) for (s = 1; s < n; s + +) { 
4) while (t > 0 kk bs+1 ! = bt+i) t = fit); 
5) if (6 s +i == bt+i) { 

6) t = t + l; 

7) f(s + 1) = t; 

} 

8) else f(s + 1) = 0; 

} 

Figure 3.19: Algorithm to compute the failure function for keyword 6162 • • • bn 

As an example, the failure function for the trie constructed above for ababaa 
is: 

s 1 2 3 4 5 6 

f{s) 0 0 1 2 3 1 

For instance, states 3 and 1 represent prefixes aba and a, respectively. /(3) = 1 
because a is the longest proper prefix of aba t ha t is also a suffix of aba. Also, 
/ ( 2 ) = 0, because the longest proper prefix of ab tha t is also a suffix is the 
empty string. 

Exercise 3.4.3: Construct the failure function for the strings: 

a) abababaab. 

b) aaaaaa. 

c) abbaabb. 

! Exercise 3.4.4: Prove, by induction on s, t ha t the algorithm of Fig. 3.19 
correctly computes the failure function. 

!! Exercise 3.4.5: Show tha t the assignment t = f{t) in line (4) of Fig. 3.19 is 
executed at most n times. Show tha t therefore, the entire algorithm takes only 
0(n) t ime on a keyword of length n. 
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Having computed the failure function for a keyword bib2 • • • bn, we can scan 
a string a\a2---am in time 0(m) to tell whether the keyword occurs in the 
string. The algorithm, shown in Fig. 3.20, slides the keyword along the string, 
trying to make progress by matching the next character of the keyword with the 
next character of the string. If it cannot do so after matching s characters, then 
it "slides" the keyword right s — f(s) positions, so only the first / ( s ) characters 
of the keyword are considered matched with the string. 

1) s = 0; 
2) for (i = 1; i < m; i++) { 
3) whi le (s > 0 a{ ! = bs+1) s = f(s); 
4) if,(a* == b8+i) s = s + 1; 
5) if (s == n) r e turn "yes"; 

} 
6) r e turn "no"; 

Figure 3.20: The K M P algorithm tests whether string a\a2 - ••am contains a 
single keyword b\b2 • • • bn as a substring in 0(m + n) t ime 

Exerc i se 3 . 4 . 6 : Apply Algorithm K M P to test whether keyword ababaa is a 

substring of: 

a) abababaab. 

b) abababbaa. 

!! Exerc i se 3 . 4 . 7 : Show tha t the algorithm of Fig. 3.20 correctly tells whether 
the keyword is a substring of the given string. Hint: proceed by induction on 
i. Show tha t for all i, the value of s after line (4) is the length of the longest 
prefix of the keyword tha t is a suffix of a\a2 • • • a^. 

!! Exerc i se 3 . 4 . 8 : Show tha t the algorithm of Fig. 3.20 runs in t ime 0(m + n ) , 

assuming that function / is already computed and its values stored in an array 

indexed by s. 

Exerc i se 3 . 4 . 9 : The Fibonacci strings are defined as follows: 

1. si = b. 

2. s2 = a. 

3. Sk = Sk-iSk-2 for k > 2. 

For example, s3 = ab, S4 = aba, and S5 = abaab. 

a) Wha t is the length of s n ? 
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b) Construct the failure function for SQ. 

c) Construct the failure function for sj. 

!! d) Show tha t the failure function for any s n can be expressed by / ( l ) = 
/ ( 2 ) = 0, and for 2 < j < \sn\, f(j) is j - \sk-i\, where k is the largest 
integer such tha t < j + 1. 

!! e) In the K M P algorithm, what is the largest number of consecutive applica
tions of the failure function, when we try to determine whether keyword 
Sk appears in text string s^+i? 

Aho and Corasick generalized the K M P algorithm to recognize any of a 
set of keywords in a text string. In this case, the trie is a t rue tree, with 
branching from the root. There is one state for every string tha t is a prefix 
(not necessarily proper) of any keyword. The parent of a s tate corresponding 
to string b\b2 • • • bk is the state tha t corresponds to &1&2 • • • frfc-i- A state is 
accepting if it corresponds to a complete keyword. For example, Fig. 3.21 
shows the trie for the keywords he , she , h i s , and h e r s . 

Figure 3.21: Trie for keywords he, she , h i s , h e r s 

The failure function for the general trie is defined as follows. Suppose s 
is the state tha t corresponds to string &i&2 • • • bn. Then f(s) is the state tha t 
corresponds to the longest proper suffix of &i62 • • -bn tha t is also a prefix of 
some keyword. For example, the failure function for the trie of Fig. 3.21 is: 

s 1 2 3 4 5 6 7 8 9 

f(s) 0 0 0 1 2 0 3 0 3 

! E x e r c i s e 3 . 4 . 1 0 : Modify the algorithm of Fig. 3.19 to compute the failure 
function for general tries. Hint: The major difference is tha t we cannot simply 
test for equality or inequality of bs+1 and bt+i in lines (4) and (5) of Fig. 3.19. 
Rather , from any state there may be several transitions out on several charac
ters, as there are transitions on both e and i from state 1 in Fig. 3.21. Any of 
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those transitions could lead to a s tate tha t represents the longest suffix tha t is 
also a prefix. 

E x e r c i s e 3 . 4 . 1 1 : Construct the tries and compute the failure function for the 
following sets of keywords: 

a) aaa , abaaa , and ababaaa . 

b ) a l l , f a l l , f a t a l , l l ama, and lame. 

c ) p i p e , p e t , i tem, temper , and p e r p e t u a l . 

! E x e r c i s e 3 . 4 . 1 2 : Show tha t your algorithm from Exercise 3.4.10 still runs in 
t ime tha t is linear in the sum of the lengths of the keywords. 

3.5 The Lexical-Analyzer Generator Lex 

In this section, we introduce a tool called Lex, or in a more recent implemen
tat ion F lex , tha t allows one to specify a lexical analyzer by specifying regular 
expressions to describe pat terns for tokens. The input notation for the Lex tool 
is referred to as the Lex language and the tool itself is the Lex compiler. Behind 
the scenes, the Lex compiler transforms the input pat terns into a transition 
diagram and generates code, in a file called l e x . y y . c, tha t simulates this t ran
sition diagram. The mechanics of how this translation from regular expressions 
to transition diagrams occurs is the subject of the next sections; here we only 
learn the Lex language. 

3.5.1 Use of Lex 

Figure 3.22 suggests how Lex is used. An input file, which we call l e x . l , is 
written in the Lex language and describes the lexical analyzer to be generated. 
The Lex compiler transforms l e x . 1 to a C program, in a file tha t is always 
named l e x . y y . c. The latter file is compiled by the C compiler into a file called 
a . o u t , as always. The C-compiler output is a working lexical analyzer tha t can 
take a stream of input characters and produce a stream of tokens. 

The normal use of the compiled C program, referred to as a. ou t in Fig. 3.22, 
is as a subroutine of the parser. It is a C function tha t returns an integer, which 
is a code for one of the possible token names. The a t t r ibute value, whether it 
be another numeric code, a pointer to the symbol table, or nothing, is placed 
in a global variable y y l v a l , 2 which is shared between the lexical analyzer and 
parser, thereby making it simple to return both the name and an a t t r ibute value 
of a token. 

incidentally, the yy that appears in yylval and lex.yy.c refers to the Yacc parser-
generator, which we shall describe in Section 4.9, and which is commonly used in conjunction 
with Lex. 
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Lex source program 
l e x . l 

Lex 
compiler 

l e x . y y . c 

l e x . y y . c c 
compiler 

a. out 

Input stream a. out a. out Sequence of tokens 

Figure 3.22: Creating a lexical analyzer with Lex 

3.5.2 Structure of Lex Programs 

A Lex program has the following form: 

declarations 

°/.7. 

translation rules 

°/.0/. 
auxiliary functions 

The declarations section includes declarations of variables, manifest constants 
(identifiers declared to stand for a constant, e.g., the name of a token), and 
regular definitions, in the style of Section 3.3.4. 

The translation rules each have the form 

Pat te rn { Action } 

Each pat tern is a regular expression, which may use the regular definitions of 
the declaration section. The actions are fragments of code, typically written in 
C, although many variants of Lex using other languages have been created. 

The third section holds whatever additional functions are used in the actions. 
Alternatively, these functions can be compiled separately and loaded with the 
lexical analyzer. 

The lexical analyzer created by Lex behaves in concert with the parser as 
follows. When called by the parser, the lexical analyzer begins reading its 
remaining input, one character at a t ime, until it finds the longest prefix of the 
input tha t matches one of the pat terns Pi. It then executes the associated action 
Ai. Typically, Ai will return to the parser, but if it does not (e.g., because Pi 
describes whitespace or comments), then the lexical analyzer proceeds to find 
additional lexemes, until one of the corresponding actions causes a return to 
the parser. The lexical analyzer returns a single value, the token name, to 
the parser, but uses the shared, integer variable y y l v a l to pass additional 
information about the lexeme found, if needed. 
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E x a m p l e 3 . 1 1 : Figure 3.23 is a Lex program tha t recognizes the tokens of 
Fig. 3.12 and returns the token found. A few observations about this code will 
introduce us to many of the important features of Lex. 

In the declarations section we see a pair of special brackets, °/.{ and %}. 
Anything within these brackets is copied directly to the file l e x . y y . c , and is 
not treated as a regular definition. It is common to place there the definitions of 
the manifest constants, using C #def i n e statements to associate unique integer 
codes with each of the manifest constants. In our example, we have listed in a 
comment the names of the manifest constants, LT, IF, and so on, but have not 
shown them defined to be particular integers. 3 

Also in the declarations section is a sequence of regular definitions. These 
use the extended notation for regular expressions described in Section 3.3.5. 
Regular definitions tha t are used in later definitions or in the pat terns of the 
translation rules are surrounded by curly braces. Thus, for instance, delim is 
defined to be a shorthand for the character class consisting of the blank, the 
t ab , and the newline; the latter two are represented, as in all UNIX commands, 
by backslash followed by t or n, respectively. Then, ws is defined to be one or 
more delimiters, by the regular expression {del im}+. 

Notice tha t in the definition of id and number, parentheses are used as 
grouping metasymbols and do not stand for themselves. In contrast, E in the 
definition of number stands for itself. If we wish to use one of the Lex meta
symbols, such as any of the parentheses, +, *, or ?, to stand for themselves, we 
may precede them with a backslash. For instance, we see \. in the definition of 
number, to represent the dot, since tha t character is a metasymbol representing 
"any character," as usual in UNIX regular expressions. 

In the auxiliary-function section, we see two such functions, i n s t a l l l D ( ) 
and i n s t a l l N u m O . Like the portion of the declaration section tha t appears 
between °/0{. . . % } , everything in the auxiliary section is copied directly to file 
l e x . y y . c , but may be used in the actions. 

Finally, let us examine some of the pat terns and rules in the middle section of 
Fig. 3.23. First, ws, an identifier declared in the first section, has an associated 
empty action. If we find whitespace, we do not re turn to the parser, but look 
for another lexeme. The second token has the simple regular expression pat tern 
i f . Should we see the two letters if on the input, and they are not followed 
by another letter or digit (which would cause the lexical analyzer to find a 
longer prefix of the input matching the pat tern for id) , then the lexical analyzer 
consumes these two letters from the input and returns the token name IF, tha t 
is, the integer for which the manifest constant IF s tands. Keywords t h e n and 
e l s e are t reated similarly. 

The fifth token has the pat tern defined by id. Note that , although keywords 
like if match this pat tern as well as an earlier pat tern, Lex chooses whichever 

3 I f Lex is used along with Yacc, then it would be normal to define the manifest constants 
in the Yacc program and use them without definition in the Lex program. Since lex.yy.c is 
compiled with the Yacc output, the constants thus will be available to the actions in the Lex 
program. 
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U 

/* definitions of manifest constants 

LT, LE, EQ, NE, GT, GE, 

IF, THEN, ELSE, ID, NUMBER, RELOP */ 

'/.} 

/* regular definitions */ 

delim [ \t\n] 

ws {delim}+ 

letter [A-Za-z] 

digit [0-9] 

id {letter}({letter}|{digit})* 

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)? 

°/.y. 

{ws} {/* no action and no return */} 

if {return(IF);} 

then {return(THEN);} 

else {return(ELSE);} 

{id} {yylval = (int) installID(); return(ID);} 

{number} {yylval = (int) installNumO ; return(NUMBER);} 
1 I < M {yylval = LT; return(RELOP) ;} 
"<=" {yylval = LE; return(RELOP) ;} 
II _ II {yylval = EQ; return(RELOP) ;} 
"<>" {yylval = NE; return(RELOP) ;} 

{yylval = GT; return(RELOP) ;} 
{yylval = GE; return(RELOP) •} 

int installlDQ {/* function to install the lexeme, whose 

first character is pointed to by yytext, 

arid whose length is yyleng, into the 

symbol table and return a pointer 

thereto */ 

int installNumO {/* similar to installlD, but puts numer

ical constants into a separate table */ 
} 

Figure 3.23: Lex program for the tokens of Fig. 3.12 



144 CHAPTER 3. LEXICAL ANALYSIS 

pat tern is listed first in situations where the longest matching prefix matches 
two or more pat terns . The action taken when id is matched is threefold: 

1. Function i n s t a l l l D ( ) is called to place the lexeme found in the symbol 
table. 

2. This function returns a pointer to the symbol table, which is placed in 
global variable y y l v a l , where it can be used by the parser or a later 
component of the compiler. Note that i n s t a l l l D ( ) has available to it 
two variables tha t are set automatically by the lexical analyzer tha t Lex 
generates: 

(a) y y t e x t is a pointer to the beginning of the lexeme, analogous to 
lexemeBegin in Fig. 3.3. 

(b) yy l eng is the length of the lexeme found. 

3. The token name ID is returned to the parser. 

The action taken when a lexeme matching the pat tern number is similar, using 
the auxiliary function i n s t a l l N u m O . • 

3.5.3 Conflict Resolution in Lex 

We have alluded to the two rules tha t Lex uses to decide on the proper lexeme 
to select, when several prefixes of the input match one or more pat terns: 

1. Always prefer a longer prefix to a shorter prefix. 

2. If the longest possible prefix matches two or more pat terns , prefer the 
pat tern listed first in the Lex program. 

E x a m p l e 3 . 1 2 : The first rule tells us to continue reading letters and digits to 
find the longest prefix of these characters to group as an identifier. It also tells 
us to t reat <= as a single lexeme, rather than selecting < as one lexeme and = 
as the next lexeme. The second rule makes keywords reserved, if we list the 
keywords before id in the program. For instance, if t h e n is determined to be 
the longest prefix of the input tha t matches any pat tern, and the pat tern t h e n 
precedes { i d } , as it does in Fig. 3.23, then the token THEN is returned, rather 
than ID. • 

3.5.4 The Lookahead Operator 

Lex automatically reads one character ahead of the last character tha t forms 
the selected lexeme, and then retracts the input so only the lexeme itself is 
consumed from the input. However, sometimes, we want a certain pa t tern to 
be matched to the input only when it is followed by a certain other characters. 
If so, we may use the slash in a pat tern to indicate the end of the par t of the 
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pat tern tha t matches the lexeme. Wha t follows / is additional pat tern tha t 
must be matched before we can decide tha t the token in question was seen, but 
what matches this second pat tern is not par t of the lexeme. 

E x a m p l e 3 . 1 3 : In Fortran and some other languages, keywords are not re
served. Tha t situation creates problems, such as a statement 

IF(I,J) = 3 

where IF is the name of an array, not a keyword. This statement contrasts with 

statements of the form 

IF( condition ) THEN ... 

where IF is a keyword. Fortunately, we can be sure tha t the keyword IF is 
always followed by a left parenthesis, some text — the condition —- tha t may 
contain parentheses, a right parenthesis and a letter. Thus, we could write a 
Lex rule for the keyword IF like: 

IF / \( .* \) {letter} 

This rule says tha t the pat tern the lexeme matches is just the two letters IF. 
The slash says tha t additional pat tern follows but does not match the lexeme. 
In this pat tern, the first character is the left parentheses. Since tha t character is 
a Lex metasymbol, it must be preceded by a backslash to indicate tha t it has its 
literal meaning. The dot and star match "any string without a newline." Note 
tha t the dot is a Lex metasymbol meaning "any character except newline." It 
is followed by a right parenthesis, again with a backslash to give tha t character 
its literal meaning. The additional pa t te rn is followed by the symbol letter, 
which is a regular definition representing the character class of all letters. 

Note tha t in order for this pat tern to be foolproof, we must preprocess 
the input to delete whitespace. We have in the pat tern neither provision for 
whitespace, nor can we deal with the possibility tha t the condition extends over 
lines, since the dot will not match a newline character. 

For instance, suppose this pa t te rn is asked to match a prefix of input: 

IF(A<(B+C)*D)THEN... 

the first two characters match IF, the next character matches \ ( , the next nine 
characters match .*, and the next two match \) and letter. Note the fact tha t 
the first right parenthesis (after C) is not followed by a letter is irrelevant; we 
only need to find some way of matching the input to the pat tern. We conclude 
tha t the letters IF constitute the lexeme, and they are an instance of token if. 
• 
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3.5.5 Exercises for Section 3.5 

Exerc i se 3 . 5 . 1 : Describe how to make the following modifications to the Lex 
program of Fig. 3.23: 

a) Add the keyword w h i l e . 

b) Change the comparison operators to be the C operators of tha t kind. 

c) Allow the underscore (_) as an additional letter. 

! d) Add a new pat tern with token STRING. The pat tern consists of a double-
quote ("), any string of characters and a final double-quote. However, 
if a double-quote appears in the string, it must be escaped by preceding 
it with a backslash ( \ ) , and therefore a backslash in the string must be 
represented by two backslashes. The lexical value, which is the string 
without the surrounding double-quotes, and with backslashes used to es
cape a character removed. Strings are to be installed in a table of strings. 

Exerc i se 3 . 5 . 2 : Write a Lex program tha t copies a file, replacing each non
empty sequence of white space by a single blank. 

Exerc i se 3 . 5 . 3 : Write a Lex program tha t copies a C program, replacing each 
instance of the keyword f l o a t by double. 

! Exerc i se 3 . 5 . 4 : Write a Lex program tha t converts a file to "Pig latin." 
Specifically, assume the file is a sequence of words (groups of letters) separated 
by whitespace. Every time you encounter a word: 

1. If the first letter is a consonant, move it to the end of the word and then 

add ay. 

2. If the first letter is a vowel, just add ay to the end of the word. 

All nonletters are copied intact to the output . 

! Exerc i se 3 . 5 . 5 : In SQL, keywords and identifiers are case-insensitive. Write 
a Lex program tha t recognizes the keywords SELECT, FROM, and WHERE (in any 
combination of capital and lower-case letters), and token ID, which for the 
purposes of this exercise you may take to be any sequence of letters and digits, 
beginning with a letter. You need not install identifiers in a symbol table, but 
tell how the "install" function would differ from tha t described for case-sensitive 
identifiers as in Fig. 3.23. 
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3.6 Finite Automata 
We shall now discover how Lex turns its input program into a lexical analyzer. 
At the heart of the transition is the formalism known as finite automata. These 
are essentially graphs, like transition diagrams, with a few differences: 

1. Finite au tomata are recognizers; they simply say "yes" or "no" about each 

possible input string. 

2. Finite au tomata come in two flavors: 

(a) Nondeterministic finite automata (NFA) have no restrictions on the 
labels of their edges. A symbol can label several edges out of the 
same state, and e, the empty string, is a possible label. 

(b) Deterministic finite automata (DFA) have, for each state, and for 
each symbol of its input alphabet exactly one edge with tha t symbol 
leaving tha t s tate. 

Both deterministic and nondeterministic finite au tomata are capable of rec
ognizing the same languages. In fact these languages are exactly the same 
languages, called the regular languages, tha t regular expressions can describe. 4 

3.6.1 Nondeterministic Finite Automata 

A nondeterministic finite automaton (NFA) consists of: 

1. A finite set of states 5. 

2. A set of input symbols E, the input alphabet. We assume tha t e, which 
stands for the empty string, is never a member of E. 

3. A transition function tha t gives, for each state, and for each symbol in 
E U {e} a set of next states. 

4. A state so from S tha t is distinguished as the start state (or initial state). 

5. A set of states F, a subset of S, tha t is distinguished as the accepting 
states (or final states). 

We can represent either an NFA or DFA by a transition graph, where the 
nodes are states and the labeled edges represent the transition function. There 
is an edge labeled a from state s to state t if and only if t is one of the next 
states for s tate s and input a. This graph is very much like a transition diagram, 
except: 

4 There is a small lacuna: as we defined them, regular expressions cannot describe the 
empty language, since we would never want to use this pattern in practice. However, finite 
automata can define the empty language. In the theory, 0 is treated as an additional regular 
expression for the sole purpose of defining the empty language. 
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a) The same symbol can label edges from one state to several different states, 
and 

b) An edge may be labeled by e, the empty string, instead of, or in addition 
to, symbols from the input alphabet. 

E x a m p l e 3 . 1 4 : The transition graph for an NFA recognizing the language 
of regular expression ( a | b ) * a b b is shown in Fig. 3.24. This abstract example, 
describing all strings of a's and &'s ending in the particular string abb, will be 
used throughout this section. It is similar to regular expressions tha t describe 
languages of real interest, however. For instance, an expression describing all 
files whose name ends in .o is a n y * . o , where a n y stands for any printable 
character. 

a 

b 

Figure 3.24: A nondeterministic finite automaton 

Following our convention for transition diagrams, the double circle around 
state 3 indicates tha t this state is accepting. Notice tha t the only ways to get 
from the start state 0 to the accepting state is to follow some pa th tha t stays 
in state 0 for a while, then goes to states 1, 2, and 3 by reading abb from the 
input. Thus, the only strings getting to the accepting state are those tha t end 
in abb. • 

3.6.2 Transition Tables 

We can also represent an NFA by a transition table, whose rows correspond to 
states, and whose columns correspond to the input symbols and e. The entry for 
a given state and input is the value of the transition function applied to those 
arguments. If the transition function has no information about tha t state-input 
pair, we put 0 in the table for the pair. 

E x a m p l e 3 . 1 5 : The transition table for the NFA of Fig. 3.24 is shown in 

Fig. 3.25. • 

The transition table has the advantage tha t we can easily find the transitions 
on a given state and input. Its disadvantage is tha t it takes a lot of space, when 
the input alphabet is large, yet most states do not have any moves on most of 
the input symbols. 
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S T A T E a b e 

0 { 0 , 1 } { 0 } 0 
1 0 { 2 } 0 
2 0 { 3 } 0 
3 0 0 0 

Figure 3 . 2 5 : Transition table for the NFA of Fig. 3 . 2 4 

3.6.3 Acceptance of Input Strings by Automata 

An NFA accepts input string x if and only if there is some pa th in the transition 
graph from the start state to one of the accepting states, such tha t the symbols 
along the pa th spell out x. Note tha t e labels along the path are effectively 
ignored, since the empty string does not contribute to the string constructed 
along the path. 

E x a m p l e 3 . 1 6 : The string aabb is accepted by the NFA of Fig. 3 . 2 4 . The 
path labeled by aabb from state 0 to state 3 demonstrating this fact is: 

a a b b 
0 • 0 • 1 *~ 2 • 3 

Note tha t several paths labeled by the same string may lead to different states. 
For instance, pa th 

a a b b 
0 • 0 • 0 *~ 0 • 0 

is another pa th from state 0 labeled by the string aabb. This pa th leads to 
state 0, which is not accepting. However, remember tha t an NFA accepts a 
string as long as some pa th labeled by tha t string leads from the start state 
to an accepting state. The existence of other paths leading to a nonaccepting 
state is irrelevant. • 

The language defined (or accepted) by an NFA is the set of strings labeling 
some pa th from the start to an accepting state. As was mentioned, the NFA of 
Fig. 3 . 2 4 defines the same language as does the regular expression (a |b)*abb, 
tha t is, all strings from the alphabet {a, b} tha t end in abb. We may use L(A) 
to stand for the language accepted by automaton A. 

E x a m p l e 3 . 1 7 : Figure 3 . 2 6 is an NFA accepting L (aa* |bb*) . String aaa is 
accepted because of the path 

e a a a 
0 • l »• 2 *- 2 • 2 

Note tha t e's "disappear" in a concatenation, so the label of the pa th is aaa. 
• 

3.6.4 Deterministic Finite Automata 

A deterministic finite automaton (DFA) is a special case of an NFA where: 
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a 

a 

start 

b 

b 

Figure 3.26: NFA accepting aa*|bb* 

1. There are no moves on input e, and 

2. For each state s and input symbol a, there is exactly one edge out of s 

If we are using a transition table to represent a DFA, then each entry is a single 
state, we may therefore represent this s tate without the curly braces tha t we 
use to form sets. 

While the NFA is an abstract representation of an algorithm to recognize 
the strings of a certain language, the DFA is a simple, concrete algorithm for 
recognizing strings. It is fortunate indeed tha t every regular expression and 
every NFA can be converted to a DFA accepting the same language, because it 
is the DFA tha t we really implement or simulate when building lexical analyzers. 
The following algorithm shows how to apply a DFA to a string. 

A l g o r i t h m 3 . 1 8 : Simulating a DFA. 

I N P U T : An input string x terminated by an end-of-file character eof. A DFA 
D with start s ta te so, accepting states F, and transition function move. 

O U T P U T : Answer "yes" if D accepts x; "no" otherwise. 

M E T H O D : Apply the algorithm in Fig. 3.27 to the input string x. The function 
move(s,c) gives the state to which there is an edge from state s on input c. 
The function next Char returns the next character of the input string x. • 

E x a m p l e 3 . 1 9 : In Fig. 3.28 we see the transition graph of a DFA accepting 
the language (a |b)*abb, the same as tha t accepted by the NFA of Fig. 3.24. 
Given the input string ababb, this DFA enters the sequence of states 0 , 1 , 2 , 1 , 2 , 3 
and returns "yes." • 

labeled a. 
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8 = S0] 

c = nextCharQ; 
whi le ( c != e o f ) { 

s = move(s,c); 
c = nextCharQ; 

} 
if ( s is in F ) r e turn "yes"; 
e lse re turn "no"; 

3.6.5 Exercises for Section 3.6 

! Exerc i se 3 . 6 . 1 : Figure 3.19 in the exercises of Section 3.4 computes the failure 
function for the K M P algorithm. Show how, given tha t failure function, we 
can construct, from a keyword bib2 • • - bn an. n + 1-state DFA tha t recognizes 
*bib2 • • • bn, where the dot stands for "any character." Moreover, this DFA can 

be constructed in 0(n) t ime. 

Exerc i se 3 . 6 . 2 : Design finite au tomata (deterministic or nondeterministic) 
for each of the languages of Exercise 3.3.5. 

Exerc i se 3 . 6 . 3 : For the NFA of Fig. 3.29, indicate all the paths labeled aabb. 
Does the NFA accept aabb? 

start 

a. b a. b a. b 

Figure 3.29: NFA for Exercise 3.6.3 
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e 

start 

a 

Figure 3.30: NFA for Exercise 3.6.4 

E x e r c i s e 3 . 6 . 4 : Repeat Exercise 3.6.3 for the NFA of Fig. 3.30. 

E x e r c i s e 3 . 6 . 5 : Give the transition tables for the NFA of: 

a) Exercise 3.6.3. 

b) Exercise 3.6.4. 

c) Figure 3.26. 

3.7 Prom Regular Expressions to Automata 

The regular expression is the notation of choice for describing lexical analyzers 
and other pattern-processing software, as was reflected in Section 3.5. How
ever, implementation of tha t software requires the simulation of a DFA, as in 
Algorithm 3.18, or perhaps simulation of an NFA. Because an NFA often has a 
choice of move on an input symbol (as Fig. 3.24 does oh input a from state 0) 
or on e (as Fig. 3.26 does from state 0), or even a choice of making a transition 
on e or on a real input symbol, its simulation is less straightforward than for a 
DFA. Thus often it is important to convert an NFA to a DFA tha t accepts the 
same language. 

In this section we shall first show how to convert NFA's to DFA's. Then, we 
use this technique, known as "the subset construction," to give a useful algo
ri thm for simulating NFA's directly, in situations (other than lexical analysis) 
where the NFA-to-DFA conversion takes more time than the direct simulation. 
Next, we show how to convert regular expressions to NFA's, from which a DFA 
can be constructed if desired. We conclude with a discussion of the time-space 
tradeoffs inherent in the various methods for implementing regular expressions, 
and see how to choose the appropriate method for your application. 

3.7.1 Conversion of an NFA to a DFA 

The general idea behind the subset construction is tha t each state of the 
constructed DFA corresponds to a set of NFA states. After reading input 
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flifl2 • • • Q>n, the DFA is in tha t s tate which corresponds to the set of states tha t 
the NFA can reach, from its s tar t state, following paths labeled a\a2 • • • an. 

It is possible tha t the number of DFA states is exponential in the number 
of NFA states, which could lead to difficulties when we t ry to implement this 
DFA. However, part of the power of the automaton-based approach to lexical 
analysis is tha t for real languages, the NFA and DFA have approximately the 
same number of states, and the exponential behavior is not seen. 

A l g o r i t h m 3 . 2 0 : The subset construction of a DFA from an NFA. 

I N P U T : An NFA JV. 

O U T P U T : A DFA D accepting the same language as N. 

M E T H O D : Our algorithm constructs a transition table Dtran for D. Each 
state of D is a set of NFA states, and we construct Dtran so D will simulate 
"in parallel" all possible moves N can make on a given input string. Our first 
problem is to deal with e-transitions of N properly. In Fig. 3 . 3 1 we see the 
definitions of several functions tha t describe basic computations on the states 
of N tha t are needed in the algorithm. Note tha t s is a single state of N, while 
T is a set of states of N. 

O P E R A T I O N D E S C R I P T I O N 

e-closure(s) Set of NFA states reachable from NFA state s 

on e-transitions alone. 

e-closure(T) Set of NFA states reachable from some NFA state s 

in set T on e-transitions alone; = U s in T e-closure(s). 

move(T, a) Set of NFA states to which there is a transition on 

input symbol a from some state s in T. 

Figure 3 . 3 1 : Operations on NFA states 

We must explore those sets of states tha t N can be in after seeing some input 
string. As a basis, before reading the first input symbol, N can be in any of the 
states of e-closure(so), where SQ is its s tar t state. For the induction, suppose 
tha t N can be in set of states T after reading input string x. If it next reads 
input a, then N can immediately go to any of the states in move(T, a). However, 
after reading a, it may also make several e-transitions; thus N could be in any 
state of e-closure(move(T, a)) after reading input xa. Following these ideas, the 
construction of the set of Z?'s states, Dstates, and its transit ion function Dtran, 
is shown in Fig. 3 . 3 2 . 

The start s tate of D is e-closure(so), and the accepting states of D are all 
those sets of AT's states tha t include at least one accepting s ta te of N. To 
complete our description of the subset construction, we need only to show how 
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initially, e-closure(s0) is the only state in Dstates, and it is unmarked; 
whi le ( there is an unmarked state T in Dstates ) { 

mark T; 

for ( each input symbol a ) { 

U = e-closure(move(T,a)); 
if ( U is not in Dstates ) 

add U as an unmarked state to Dstates; 
Dtran[T, a] = U; 

} 
} 

Figure 3.32: The subset construction 

e-closure(T) is computed for any set of NFA states T. This process, shown in 
Fig. 3.33, is a straightforward search in a graph from a set of states. In this 
case, imagine tha t only the e-labeled edges are available in the graph. • 

push all states of T onto stack; 
initialize e~closure(T) to T; 
whi le ( stack is not empty ) { 

pop t, the top element, off stack; 
for ( each state u with an edge from t to u labeled e ) 

if ( u is not in e-closure(T) ) { 
add u to e-closure(T); 
push u onto stack; 

} 
} 

Figure 3.33: Computing e-closure(T) 

E x a m p l e 3 . 2 1 : Figure 3.34 shows another NFA accepting (a|b)*abb; i t hap
pens to be the one we shall construct directly from this regular expression in 
Section 3.7. Let us apply Algorithm 3.20 to Fig. 3.29. 

The start s tate A of the equivalent DFA is e-closure(0), or A = { 0 , 1 , 2 , 4 , 7 } , 
since these are exactly the states reachable from state 0 via a pa th all of whose 
edges have label e. Note tha t a pa th can have zero edges, so state 0 is reachable 
from itself by an e-labeled path. 

The input alphabet is {a, b}. Thus, our first step is to mark A and compute 
Dtran[A,a] = e-closure(move(A,a)) and Dtran[A,b] = e-closure(move(A,b)). 
Among the states 0, 1, 2, 4, and 7, only 2 and 7 have transitions on a, to 
3 and 8, respectively. Thus, move(A,a) = {3 ,8} . Also, e-closure({3,8} = 
{ 1 , 2 , 3 , 4 , 6 , 7 , 8 } , so we conclude 
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e 

8 

Figure 3 . 3 4 : NFA N for (a |b)*abb 

Dtran[A,a] = e-closure(move(A,a)) — e-closure({3,8}) = { 1 , 2 , 3 , 4 , 6 , 7 , 8 } 

Let us call this set B, so Dtran[A, a] = B. 
Now, we must compute Dtran[A,b]. Among the states in A, only 4 has a 

transition on 6, and it goes to 5. Thus, 

Dtran[A,b] = e-closure({5}) = { 1 , 2 , 4 , 6 , 7 } 

Let us call the above set C, so Dtran[A, b] — C. 

NFA S T A T E DFA S T A T E a b 

{ 0 , 1 , 2 , 4 , 7 } A B C 
{ 1 , 2 , 3 , 4 , 6 , 7 , 8 } B B D 

{ 1 , 2 , 4 , 5 , 6 , 7 } C B C 
{ 1 , 2 , 4 , 5 , 6 , 7 , 9 } D B E 

{ 1 , 2 , 3 , 5 , 6 , 7 , 1 0 } E B C 

start 

Figure 3 . 3 5 : Transition table Dtran for DFA D 

If we continue this process with the unmarked sets B and C, we eventually 
reach a point where all the states of the DFA are marked. This conclusion is 
guaranteed, since there are "only" 2 1 1 different subsets of a set of eleven NFA 
states. The five different DFA states we actually construct, their correspond
ing sets of NFA states, and the transition table for the DFA D are shown in 
Fig. 3 . 3 5 , and the transition graph for D is in Fig. 3 . 3 6 . State A is the start 
s ta te , and s tate E, which contains s ta te 10 of the NFA, is the only accepting 
state. 

Note tha t D has one more state than the DFA of Fig. 3 . 2 8 for the same lan
guage. States A and C have the same move function, and so can be merged. We 
discuss the mat ter of minimizing the number of states of a DFA in Section 3 . 9 . 6 . 
• 
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b 

start 

a 

Figure 3.36: Result of applying the subset construction to Fig. 3.34 

3.7.2 Simulation of an NFA 

A strategy that has been used in a number of text-editing programs is to con
struct an NFA from a regular expression and then simulate the NFA using 
something like an on-the-fly subset construction. The simulation is outlined 
below. 

A l g o r i t h m 3 . 2 2 : Simulating an NFA. 

I N P U T : An input string x terminated by an end-of-file character eof. An NFA 
N with start s tate SQ, accepting states F, and transition function move. 

O U T P U T : Answer "yes" if M accepts x; "no" otherwise. 

M E T H O D : The algorithm keeps a set of current states S, those tha t are reached 
from so following a pa th labeled by the inputs read so far. If c is the next input 
character, read by the function nextCharQ, then we first compute move(S,c) 
and then close tha t set using e-closureQ. The algorithm is sketched in Fig. 3.37. 
• 

1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 

S = e-closure(so); 
c = nextCharQ; 
whi le ( c != e o f ) { 

S = e-closure(move(S,c)); 
c = nextCharQ; 

} 
if ( 5 n F != 0 ) r e turn "yes"; 
e lse re turn "no"; 

Figure 3.37: Simulating an NFA 
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3.7.3 Efficiency of NFA Simulation 

If carefully implemented, Algorithm 3.22 can be quite efficient. As the ideas 
involved are useful in a number of similar algorithms involving search of graphs, 
we shall look at this implementation in additional detail. The da ta structures 
we need are: 

1. Two stacks, each of which holds a set of NFA states. One of these stacks, 
oldStates, holds the "current" set of states, i.e., the value of S on the right 
side of line (4) in Fig. 3.37. The second, newStates, holds the "next" set 
of states — 5 on the left side of line (4). Unseen is a step where, as we 
go around the loop of lines (3) through (6), newStates is transferred to 
oldStates. 

2. A boolean array alreadyOn, indexed by the NFA states, to indicate which 
states are in newStates. While the array and stack hold the same infor
mation, it is much faster to interrogate alreadyOn[s] than to search for 
s ta te s on the stack newStates. It is for this efficiency tha t we maintain 
both representations. 

3. A two-dimensional array move[s,a] holding the transition table of the 
NFA. The entries in this table, which are sets of states, are represented 
by linked lists. 

To implement line (1) of Fig. 3.37, we need to set each entry in array al
readyOn to FALSE, then for each state s in e-closure(so), push s onto oldStates 
and set alreadyOn[s] to TRUE. This operation on state s, and the implementation 
of line (4) as well, are facilitated by a function we shall call addState(s). This 
function pushes state s onto newStates, sets alreadyOn[s] to TRUE, and calls 
itself recursively on the states in move[s,e] in order to further the computation 
of e-closure(s). However, to avoid duplicating work, we must be careful never 
to call addState on a state tha t is already on the stack newStates. Figure 3.38 
sketches this function. 

Figure 3.38: Adding a new state s, which is known not to be on newStates 

9) 
10) 

11) 
12) 
13) 
14) 
15) 

addState(s) { 
push s onto newStates; 
alreadyOn[s] = TRUE; 

for ( t on move[s, e] ) 

We implement line (4) of Fig. 3.37 by looking at each state s on oldStates. 
We first find the set of states move[s, c], where c is the next input, and for each 
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of those states tha t is not already on newStates, we apply addState to it. Note 
tha t addState has the effect of computing the e- closure and adding all those 
states to newStates as well, if they were not already on. This sequence of steps 
is summarized in Fig. 3.39. 

16) for ( s o n oldStates ) { 
17) for ( t on move[s, c] ) 
18) if ( \alreadyOn[t] ) 
19) addState(t); 
20) pop s from oldStates; 
21) } 

22) for ( s on newStates ) { 
23) pop s from newStates; 
24) push s onto oldStates; 
25) a/readyOn[s] = FALSE; 
26) } 

Figure 3.39: Implementation of step (4) of Fig. 3.37 

Now, suppose tha t the NFA N has n states and m transitions; i.e., m is the 
sum over all states of the number of symbols (or e) on which the state has a 
transition out. Not counting the call to addState at line (19) of Fig. 3.39, the 
time spent in the loop of lines (16) through (21) is 0(n). Tha t is, we can go 
around the loop at most n times, and each step of the loop requires constant 
work, except for the t ime spent in addState. The same is t rue of the loop of 
lines (22) through (26). 

During one execution of Fig. 3.39, i.e., of step (4) of Fig. 3.37, it is only 
possible to call addState on a given state once. The reason is tha t whenever 
we call addState(s), we set alreadyOn[s] to TRUE at line (11) of Fig. 3.39. Once 
alreadyOn[s] is TRUE, the tests at line (13) of Fig. 3.38 and line (18) of Fig. 3.39 
prevent another call. 

The time spent in one call to addState, exclusive of the t ime spent in recur
sive calls at line (14), is 0 (1 ) for lines (10) and (11). For lines (12) and (13), 
the t ime depends on how many e-transitions there are out of s tate s. We do 
not know this number for a given state, but we know tha t there are at most m 
transitions in total , out of all states. As a result, the aggregate t ime spent in 
lines (11) over all calls to addState during one execution of the code of Fig. 3.39 
is 0(m). The aggregate for the rest of the steps of addState is 0(n), since it is 
a constant per call, and there are at most n calls. 

We conclude that , implemented properly, the t ime to execute line (4) of 
Fig. 3.37 is 0(n + m) . The rest of the while-loop of lines (3) through (6) takes 
0 (1 ) t ime per iteration. If the input x is of length k, then the total work in 
tha t loop is 0((k(n + m ) ) . Line (1) of Fig. 3.37 can be executed in 0 ( n + m) 
t ime, since it is essentially the steps of Fig. 3.39 with oldStates containing only 
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Big-Oh Notation 

An expression like 0(n) is a shorthand for "at most some constant times 
n." Technically, we say a function / ( n ) , perhaps the running time of some 
step of an algorithm, is 0(g(n)) if there are constants c and no, such tha t 
whenever n > n 0 , it is t rue tha t / ( n ) < cg(n). A useful idiom is "0(1) , " 
which means "some constant." The use of this big-oh notation enables 
us to avoid getting too far into the details of what we count as a unit of 
execution t ime, yet lets us express the rate at which the running t ime of 
an algorithm grows. 

the state so- Lines (2), (7), and (8) each take 0 (1 ) time. Thus, the running 
t ime of Algorithm 3.22, properly implemented, is 0((k(n + m ) ) . Tha t is, the 
t ime taken is proportional to the length of the input times the size (nodes plus 
edges) of the transition graph. 

3.7.4 Construction of an NFA from a Regular Expression 

We now give an algorithm for converting any regular expression to an NFA 
tha t defines the same language. The algorithm is syntax-directed, in the sense 
tha t it works recursively up the parse tree for the regular expression. For each 
subexpression the algorithm constructs an NFA with a single accepting state. 

A l g o r i t h m 3 . 2 3 : The McNaughton-Yamada-Thompson algorithm to convert 
a regular expression to an NFA. 

I N P U T : A regular expression r over alphabet S. 

O U T P U T : An NFA N accepting L(r). 

M E T H O D : Begin by parsing r into its constituent subexpressions. The rules 
for constructing an NFA consist of basis rules for handling subexpressions with 
no operators, and inductive rules for constructing larger NFA's from the NFA's 
for the immediate subexpressions of a given expression. 

BASIS: For expression e construct the NFA 
start 

Here, i is a new state, the s tar t s tate of this NFA, and / is another new state, 
the accepting state for the NFA. 

For any subexpression a in S, construct the NFA 
start 
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where again i and / are new states, the start and accepting states, respectively. 
Note tha t in both of the basis constructions, we construct a distinct NFA, with 
new states, for every occurrence of e or some o as a subexpression of r. 

I N D U C T I O N : Suppose N(s) and N(t) are NFA's for regular expressions s and 
t, respectively. 

a) Suppose r = s\t. Then N(r), the NFA for r, is constructed as in Fig. 3.40. 
Here, i and / are new states, the start and accepting states of N(r), 
respectively. There are e-transitions from i to the s tar t states of N(s) 
and N(t), and each of their accepting states have e-transitions to the 
accepting state /. Note tha t the accepting states of N(s) and N(t) are 
not accepting in N(r). Since any path from i to / must pass through 
either N(s) or N(t) exclusively, and since the label of tha t pa th is not 
changed by the e's leaving i or entering /, we conclude tha t N(r) accepts 
L(s) U L(t), which is the same as L(r). Tha t is, Fig. 3.40 is a correct 
construction for the union operator. 

Figure 3.40: NFA for the union of two regular expressions 

b) Suppose r = st. Then construct N(r) as in Fig. 3.41. The start s tate of 
N(s) becomes the start s tate of N(r), and the accepting state of N(t) is 
the only accepting s tate of N(r). The accepting s tate of N(s) and the 
start state of N(t) are merged into a single state, with all the transitions 
in or out of either state. A pa th from i to / in Fig. 3.41 must go first 
through N(s), and therefore its label will begin with some string in L(s). 
The pa th then continues through N(t), so the pa th ' s label finishes with a 
string in L(t). As we shall soon argue, accepting states never have edges 
out and start states never have edges in, so it is not possible for a pa th to 
re-enter N(s) after leaving it. Thus, N(r) accepts exactly L(s)L(i), and 
is a correct NFA for r = st. 

start 

Figure 3.41: NFA for the concatenation of two regular expressions 
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c) Suppose r = s*. Then for r we construct the NFA N(r) shown in Fig. 3.42. 
Here, i and / are new states, the s tar t s tate and lone accepting s tate of 
N(r). To get from i to /, we can either follow the introduced pa th labeled 
e, which takes care of the one string in L(s)°, or we can go to the start 
s tate of N(s), through tha t NFA, then from its accepting state back to 
its s tar t state zero or more times. These options allow N(r) to accept all 
the strings in L(s)1, L(s)2, and so on, so the entire set of strings accepted 
by N(r) is L(s*). 

d) Finally, suppose r = (s). Then L(r) = L(s), and we can use the NFA 
N(s) as N(r). 

The method description in Algorithm 3.23 contains hints as to why the 
inductive construction works as it should. We shall not give a formal correctness 
proof, but we shall list several properties of the constructed NFA's, in addition 
to the all-important fact tha t N(r) accepts language L(r). These properties 
are interesting in their own right, and helpful in making a formal proof. 

1. N(r) has at most twice as many states as there are operators and operands 
in r. This bound follows from the fact tha t each step of the algorithm 
creates at most two new states. 

2. N(r) has one start s tate and one accepting state. The accepting state has 
no outgoing transitions, and the start s tate has no incoming transitions. 

3. Each s ta te of N(r) other t han the accepting s tate has either one outgoing 
transition on a symbol in E or two outgoing transitions, both on e. 

E x a m p l e 3 . 2 4 : Let us use Algorithm 3.23 to construct an NFA for r = 
( a | b ) * a b b . Figure 3.43 shows a parse tree for r tha t is analogous to the parse 
trees constructed for arithmetic expressions in Section 2.2.3. For subexpression 
r i , the first a, we construct the NFA: 

£ 

£ 

Figure 3.42: NFA for the closure of a regular expression 

• 
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Figure 3.43: Parse tree for (a |b)*abb 

start 

10 

State numbers have been chosen for consistency with what follows. For r 2 we 
construct: 

start 

• © -

We can now combine JV(n) and N(r2), using the construction of Fig. 3.40 to 
obtain the NFA for r 3 = ri\r2] this NFA is shown in Fig. 3.44. 

start 

Figure 3.44: NFA for r 3 

The NFA for r 4 = (73) is the same as tha t for 7-3. The NFA for r 5 = ( r 3 ) * is 
then as shown in Fig. 3.45. We have used the construction in Fig. 3.42 to build 
this NFA from the NFA in Fig. 3.44. 

Now, consider subexpression r§, which is another a. We use the basis con
struction for a again, but we must use new states. It is not permissible to reuse 
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£ 

start 

£ 

Figure 3.45: NFA for r 5 

the NFA we constructed for r\, even though r\ and r% are the same expression. 
The NFA for r 6 is: 

start 

To obtain the NFA for rr = r5re, we apply the construction of Fig. 3.41. We 
merge states 7 and 7', yielding the NFA of Fig. 3.46. Continuing in this fashion 
with new NFA's for the two subexpressions b called rg and r io, we eventually 
construct the NFA for (a |b)*abb tha t we first met in Fig. 3.34. • 

£ 

start 

£ 

Figure 3.46: NFA for r 7 

3.7.5 Efficiency of String-Processing Algorithms 

We observed tha t Algorithm 3.18 processes a string x in t ime 0(|a?|), while in 
Section 3.7.3 we concluded tha t we could simulate an NFA in time proportional 
to the product of \x\ and the size of the NFA's transition graph. Obviously, it 




